搭建神经网络
import torchfrom torch import nn'''搭建神经网络'''class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),nn.Linear(in_features=64 * 4 * 4, out_features=64),nn.Linear(in_features=64, out_features=10))def forward(self, x):x = self.model(x)return x# 验证网络模型参数是否正确if __name__ == '__main__':model = Model()input = torch.ones((64, 3, 32, 32))output = model(input)print(output.shape)
训练和验证
import torch.optimimport torchvision.datasetsfrom torch import nnfrom torch.utils.data import DataLoaderfrom torch.utils.tensorboard import SummaryWriterfrom model_complete import Model'''准备数据集'''train_data = torchvision.datasets.CIFAR10("../dataset", train=True, transform=torchvision.transforms.ToTensor(),download=True)test_data = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)'''数据集长度'''train_data_size = len(train_data)test_data_size = len(test_data)print("训练数据集的长度为:{}".format(train_data_size))print("测试数据集的长度为:{}".format(test_data_size))'''利用dataloader加载数据集'''train_dataloader = DataLoader(train_data, batch_size=64)test_dataloader = DataLoader(test_data, batch_size=64)'''创建网络模型'''model = Model()'''损失函数'''loss_fn = nn.CrossEntropyLoss()'''优化器'''# learning_rate = 0.01# 1e-2=1*(10)^(-2)=0.01learning_rate = 1e-2optimizer = torch.optim.SGD(params=model.parameters(), lr=learning_rate)'''设置训练网络的一些参数'''total_train_step = 0 # 记录训练的次数total_test_step = 0 # 记录测试的次数epoch = 10 # 训练的轮数'''添加tensorboard'''writer = SummaryWriter("../logs_train")for i in range(epoch):print("---------第{}轮训练开始!---------".format(i + 1))'''训练步骤开始'''for data in train_dataloader:imgs, targets = dataoutput = model(imgs)loss = loss_fn(output, targets) # 计算损失# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step = total_train_step + 1if total_train_step % 100 == 0:print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss", loss.item(), total_train_step)'''测试步骤开始'''total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs, targets = dataoutputs = model(imgs)loss = loss_fn(outputs, targets)total_test_loss = total_test_loss + loss.item()accuracy = (outputs.argmax(1) == targets).sum()total_accuracy = total_accuracy + accuracyprint("整体测试集上的Loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))writer.add_scalar("test_loss", total_test_loss, total_test_step)writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)total_test_step = total_test_step + 1torch.save(model, "model_{}.pth".format(i))print("模型已保存!")writer.close()
保存模型测试
从网络上下载一个狗狗的图片测试下模型。
利用Google Colab云服务器gpu训练并保存模型。
CIFAR10数据集对应的类别。
模型预测。
import osimport torchimport torchvisionfrom PIL import Imagefrom torch import nn'''搭建神经网络'''class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),nn.Linear(in_features=64 * 4 * 4, out_features=64),nn.Linear(in_features=64, out_features=10))def forward(self, x):x = self.model(x)return xclasses = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship','truck')# 注意gpu上训练的模型要映射到cpu上运行。model = torch.load("model_29_gpu.pth", map_location=torch.device('cpu'))# print(model)image_path = "/Users/huang/Desktop/code/learn_torch/imgs"img_list = os.listdir(image_path)print(img_list)for img in img_list:img_item_path = os.path.join(image_path, img)print(img_item_path)image = Image.open(img_item_path)image = image.convert("RGB")transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)), torchvision.transforms.ToTensor()])image = transform(image)print(image.shape)image = torch.reshape(image, (1, 3, 32, 32))model.eval()with torch.no_grad():output = model(image)# print(output)print("预测结果为:" + classes[output.argmax(1).item()])
预测结果确实为5,是狗狗!

再来一次,验证一个飞机试试。
也验证成功了!!!开心~
