import osimport datetime#打印时间def printbar():nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')print("\n"+"=========="*8 + "%s"%nowtime)#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
准备数据
titanic数据集的目标是根据乘客信息预测他们在Titanic号撞击冰山沉没后能否生存。
结构化数据一般会使用Pandas中的DataFrame进行预处理。
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport torchfrom torch import nnfrom torch.utils.data import Dataset,DataLoader,TensorDatasetdftrain_raw = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/data/titanic/train.csv')dftest_raw = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/data/titanic/test.csv')dftrain_raw.head(10)

字段说明:
- Survived:0代表死亡,1代表存活【y标签】
- Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
- Name:乘客姓名 【舍去】
- Sex:乘客性别 【转换成bool特征】
- Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
- SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
- Parch:乘客父母/孩子的个数(整数值)【数值特征】
- Ticket:票号(字符串)【舍去】
- Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】
- Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
- Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】
label分布情况
dftrain_raw['Survived'].value_counts()

%matplotlib inline%config InlineBackend.figure_format = 'png'ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar',figsize = (12,8),fontsize=15,rot = 0)ax.set_ylabel('Counts',fontsize = 15)ax.set_xlabel('Survived',fontsize = 15)plt.show()
年龄分布情况
dftrain_raw['Age']

%matplotlib inline%config InlineBackend.figure_format = 'png'ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple',figsize = (12,8),fontsize=15)ax.set_ylabel('Frequency',fontsize = 15)ax.set_xlabel('Age',fontsize = 15)plt.show()

年龄和label的相关性
%matplotlib inline%config InlineBackend.figure_format = 'png'ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density',figsize = (12,8),fontsize=15)dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density',figsize = (12,8),fontsize=15)ax.legend(['Survived==0','Survived==1'],fontsize = 12)ax.set_ylabel('Density',fontsize = 15)ax.set_xlabel('Age',fontsize = 15)plt.show()

数据预处理
def preprocessing(dfdata):dfresult= pd.DataFrame()#PclassdfPclass = pd.get_dummies(dfdata['Pclass']) # 独热编码dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]dfresult = pd.concat([dfresult,dfPclass],axis = 1)#SexdfSex = pd.get_dummies(dfdata['Sex'])dfresult = pd.concat([dfresult,dfSex],axis = 1)#Agedfresult['Age'] = dfdata['Age'].fillna(0)dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')#SibSp,Parch,Faredfresult['SibSp'] = dfdata['SibSp']dfresult['Parch'] = dfdata['Parch']dfresult['Fare'] = dfdata['Fare']#Carbindfresult['Cabin_null'] = pd.isna(dfdata['Cabin']).astype('int32')#EmbarkeddfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)return(dfresult)x_train = preprocessing(dftrain_raw).valuesy_train = dftrain_raw[['Survived']].valuesx_test = preprocessing(dftest_raw).valuesy_test = dftest_raw[['Survived']].valuesprint("x_train.shape =", x_train.shape )print("x_test.shape =", x_test.shape )print("y_train.shape =", y_train.shape )print("y_test.shape =", y_test.shape )

进一步使用DataLoader和TensorDataset封装成可以迭代的数据管道。
dl_train = DataLoader(TensorDataset(torch.tensor(x_train).float(),torch.tensor(y_train).float()),shuffle = True, batch_size = 8)dl_valid = DataLoader(TensorDataset(torch.tensor(x_test).float(),torch.tensor(y_test).float()),shuffle = False, batch_size = 8)
# 测试数据管道for features,labels in dl_train:print(features,labels)break

定义模型
使用Pytorch通常有三种方式构建模型:
使用nn.Sequential按层顺序构建模型 ;
继承nn.Module基类构建自定义模型;
继承nn.Module基类构建模型并辅助应用模型容器进行封装。
此处选择使用最简单的nn.Sequential,按层顺序模型。
def create_net():net = nn.Sequential()net.add_module("linear1",nn.Linear(15,20))net.add_module("relu1",nn.ReLU())net.add_module("linear2",nn.Linear(20,15))net.add_module("relu2",nn.ReLU())net.add_module("linear3",nn.Linear(15,1))net.add_module("sigmoid",nn.Sigmoid())return netnet = create_net()print(net)

训练模型
Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。
有3类典型的训练循环代码风格:
脚本形式训练循环;
函数形式训练循环;
类形式训练循环。
此处介绍一种较通用的脚本形式。
from sklearn.metrics import accuracy_scoreloss_func = nn.BCELoss()optimizer = torch.optim.Adam(params=net.parameters(),lr = 0.01)metric_func = lambda y_pred,y_true: accuracy_score(y_true.data.numpy(),y_pred.data.numpy()>0.5)metric_name = "accuracy"
epochs = 10log_step_freq = 30dfhistory = pd.DataFrame(columns = ["epoch","loss",metric_name,"val_loss","val_"+metric_name])print("Start Training...")nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')print("=========="*8 + "%s"%nowtime)for epoch in range(1,epochs+1):# 1,训练循环-------------------------------------------------net.train()loss_sum = 0.0metric_sum = 0.0step = 1for step, (features,labels) in enumerate(dl_train, 1):# 梯度清零optimizer.zero_grad()# 正向传播求损失predictions = net(features)loss = loss_func(predictions,labels)metric = metric_func(predictions,labels)# 反向传播求梯度loss.backward()optimizer.step()# 打印batch级别日志loss_sum += loss.item()metric_sum += metric.item()if step%log_step_freq == 0:print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %(step, loss_sum/step, metric_sum/step))# 2,验证循环-------------------------------------------------net.eval()val_loss_sum = 0.0val_metric_sum = 0.0val_step = 1for val_step, (features,labels) in enumerate(dl_valid, 1):# 关闭梯度计算with torch.no_grad():predictions = net(features)val_loss = loss_func(predictions,labels)val_metric = metric_func(predictions,labels)val_loss_sum += val_loss.item()val_metric_sum += val_metric.item()# 3,记录日志-------------------------------------------------info = (epoch, loss_sum/step, metric_sum/step,val_loss_sum/val_step, val_metric_sum/val_step)dfhistory.loc[epoch-1] = info# 打印epoch级别日志print(("\nEPOCH = %d, loss = %.3f,"+ metric_name + \" = %.3f, val_loss = %.3f, "+"val_"+ metric_name+" = %.3f")%info)nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')print("\n"+"=========="*8 + "%s"%nowtime)print('Finished Training...')

评估模型
我们首先评估一下模型在训练集和验证集上的效果。
dfhistory

%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()
plot_metric(dfhistory,"loss")

plot_metric(dfhistory,"accuracy")

使用模型
#预测概率
y_pred_probs = net(torch.tensor(x_test[0:10]).float()).data
y_pred_probs

#预测类别
y_pred = torch.where(y_pred_probs>0.5,
torch.ones_like(y_pred_probs),torch.zeros_like(y_pred_probs))
y_pred

保存模型
Pytorch 有两种保存模型的方式,都是通过调用pickle序列化方法实现的。
第一种方法只保存模型参数;
第二种方法保存完整模型。
推荐使用第一种,第二种方法可能在切换设备和目录的时候出现各种问题。
1、保存模型参数(推荐)
print(net.state_dict().keys())

# 保存模型参数
torch.save(net.state_dict(), "/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/一、Pytorch的建模流程/model/1_1_net_parameter.pkl")
net_clone = create_net()
net_clone.load_state_dict(torch.load("/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/一、Pytorch的建模流程/model/1_1_net_parameter.pkl"))
net_clone.forward(torch.tensor(x_test[0:10]).float()).data

2、保存完整模型(不推荐)
torch.save(net, '/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/一、Pytorch的建模流程/model/1_1_net_model.pkl')
net_loaded = torch.load('/content/drive/MyDrive/Colab Notebooks/20天吃掉那只Pytorch/一、Pytorch的建模流程/model/1_1_net_model.pkl')
net_loaded(torch.tensor(x_test[0:10]).float()).data


