1、全排列(46)
地址:https://leetcode-cn.com/problems/permutations/
/**
* @param {number[]} nums
* @return {number[][]}
*/
// 入参是一个数组
const permute = function(nums) {
// 缓存数组的长度
const len = nums.length
// curr 变量用来记录当前的排列内容
const curr = []
// res 用来记录所有的排列顺序
const res = []
// visited 用来避免重复使用同一个数字
const visited = {}
// 定义 dfs 函数,入参是坑位的索引(从 0 计数)
function dfs(nth) {
// 若遍历到了不存在的坑位(第 len+1 个),则触碰递归边界返回
if(nth === len) {
// 此时前 len 个坑位已经填满,将对应的排列记录下来
res.push(curr.slice())
return
}
// 检查手里剩下的数字有哪些
for(let i=0;i<len;i++) {
// 若 nums[i] 之前没被其它坑位用过,则可以理解为“这个数字剩下了”
if(!visited[nums[i]]) {
// 给 nums[i] 打个“已用过”的标
visited[nums[i]] = 1
// 将nums[i]推入当前排列
curr.push(nums[i])
// 基于这个排列继续往下一个坑走去
dfs(nth+1)
// nums[i]让出当前坑位
curr.pop()
// 下掉“已用过”标识
visited[nums[i]] = 0
}
}
}
// 从索引为 0 的坑位(也就是第一个坑位)开始 dfs
dfs(0)
return res
};