Title
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks
代码:https://github.com/hujie-frank/GENet
这篇文章的作者hujie也是SENet的作者,算是channel attention的开山之作,发表在CVPR2018。GENet算是SENet后来的发展。这儿我把SENet文章中的图也贴一下,当作复习。
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图1](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208113632-8o4611y.png#crop=0&crop=0&crop=1&crop=1&id=rQBHR&originHeight=394&originWidth=1900&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=)
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图2](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208113645-uemkfkd.png#crop=0&crop=0&crop=1&crop=1&height=320&id=LvCtN&originHeight=1726&originWidth=1748&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=324)
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图3](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208113702-b08xgd4.png#crop=0&crop=0&crop=1&crop=1&height=311&id=rqLwy&originHeight=1996&originWidth=2112&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=329)
Summary
作者在SENet的基础上,进一步探讨什么样的gather + excite组合更能提升效果。结果表明:gather操作采用更大的感受野更好,excite操作增加1*1卷积更好。
Method(s)
其实作者一共比较了三种结构,分别将其定义为:![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图4](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208145327-pnx6wyj.png#crop=0&crop=0&crop=1&crop=1&height=23&id=ZEvpP&originHeight=49&originWidth=514&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=239)
:完全无参数,采用pooling + resize(neatest interpolation) + sigmoid + multiply
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图6](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208145826-j90zz8b.png#crop=0&crop=0&crop=1&crop=1&id=ohQIu&originHeight=603&originWidth=1397&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=)
pooling的时候可以采用不同的压缩比例,对比结果表明global avg pooling效果是最好的,即下图右优于下图左
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图7](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208150026-g945nbq.png#crop=0&crop=0&crop=1&crop=1&height=354&id=lstVw&originHeight=945&originWidth=795&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=298)
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图8](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208150116-b2a0f4e.png#crop=0&crop=0&crop=1&crop=1&height=353&id=KWqm6&originHeight=945&originWidth=750&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=280)
:用depth-wise conv做压缩,excite操作和
一样,也是右边的效果好
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图11](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208150340-9a80lzp.png#crop=0&crop=0&crop=1&crop=1&height=381&id=yRULQ&originHeight=1016&originWidth=887&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=333)
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图12](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208150347-px6exgn.png#crop=0&crop=0&crop=1&crop=1&height=407&id=hZVsh&originHeight=1016&originWidth=862&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=&width=345)
:在
基础上,在excite部分增加了1*1卷积,这块儿paper没说得很清楚
这三种结构的比较结果:效果最好
![[GENet]Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks - 图16](https://b3logfile.com/siyuan/1629953945402/assets/image-20211208152529-k5s73qt.png#crop=0&crop=0&crop=1&crop=1&id=A17F5&originHeight=427&originWidth=1354&originalType=binary&ratio=1&rotation=0&showTitle=false&status=done&style=none&title=)
Notes
我目前的模型,时延符合要求了,但一段时间后会降帧,说明功耗高,需要降op。打算沿着这个思路测试和优化。
