github-yolov3
    train.py

    1. # https://github.com/ultralytics/yolov3/blob/master/train.py
    2. import argparse
    3. import time
    4. import torch.distributed as dist
    5. import torch.optim as optim
    6. import torch.optim.lr_scheduler as lr_scheduler
    7. from torch.utils.data import DataLoader
    8. import test # import test.py to get mAP after each epoch
    9. from models import *
    10. from utils.datasets import *
    11. from utils.utils import *
    12. # 0.109 0.297 0.15 0.126 7.04 1.666 4.062 0.1845 42.6 3.34 12.61 8.338 0.2705 0.001 -4 0.9 0.0005 320 giou + best_anchor False
    13. # 0.223 0.218 0.138 0.189 9.28 1.153 4.376 0.08263 24.28 3.05 20.93 2.842 0.2759 0.001357 -5.036 0.9158 0.0005722 mAP/F1 - 50/50 weighting
    14. # 0.231 0.215 0.135 0.191 9.51 1.432 3.007 0.06082 24.87 3.477 24.13 2.802 0.3436 0.001127 -5.036 0.9232 0.0005874
    15. # 0.246 0.194 0.128 0.192 8.12 1.101 3.954 0.0817 22.83 3.967 19.83 1.779 0.3352 0.000895 -5.036 0.9238 0.0007973
    16. # 0.242 0.296 0.196 0.231 5.67 0.8541 4.286 0.1539 21.61 1.957 22.9 2.894 0.3689 0.001844 -4 0.913 0.000467
    17. # 0.298 0.244 0.167 0.247 4.99 0.8896 4.067 0.1694 21.41 2.033 25.61 1.783 0.4115 0.00128 -4 0.950 0.000377
    18. # 0.268 0.268 0.178 0.240 4.36 1.104 5.596 0.2087 14.47 2.599 16.27 2.406 0.4114 0.001585 -4 0.950 0.000524
    19. # 0.161 0.327 0.190 0.193 7.82 1.153 4.062 0.1845 24.28 3.05 20.93 2.842 0.2759 0.001357 -4 0.916 0.000572 # 320 --epochs 2
    20. # Training hyperparameters
    21. hyp = {'giou': 0.8541, # giou loss gain
    22. 'xy': 4.062, # xy loss gain
    23. 'wh': 0.1845, # wh loss gain
    24. 'cls': 21.61, # cls loss gain
    25. 'cls_pw': 1.957, # cls BCELoss positive_weight
    26. 'obj': 22.9, # obj loss gain
    27. 'obj_pw': 2.894, # obj BCELoss positive_weight
    28. 'iou_t': 0.3689, # iou target-anchor training threshold
    29. 'lr0': 0.001844, # initial learning rate
    30. 'lrf': -4., # final learning rate = lr0 * (10 ** lrf)
    31. 'momentum': 0.913, # SGD momentum
    32. 'weight_decay': 0.000467} # optimizer weight decay


    含金量超高的一个环节来了!

    1. def train(cfg,
    2. data_cfg,
    3. img_size=416,
    4. epochs=100, # 500200 batches at bs 16, 117263 images = 273 epochs
    5. batch_size=16,
    6. accumulate=4): # effective bs = batch_size * accumulate = 8 * 8 = 64
    7. # Initialize
    8. init_seeds()
    9. weights = 'weights' + os.sep
    10. last = weights + 'last.pt'
    11. best = weights + 'best.pt'
    12. device = torch_utils.select_device()
    13. multi_scale = opt.multi_scale
    14. if multi_scale:
    15. img_size_min = round(img_size / 32 / 1.5)
    16. img_size_max = round(img_size / 32 * 1.5)
    17. img_size = img_size_max * 32 # initiate with maximum multi_scale size
    18. # Configure run
    19. data_dict = parse_data_cfg(data_cfg)
    20. train_path = data_dict['train']
    21. nc = int(data_dict['classes']) # number of classes
    22. # Initialize model
    23. model = Darknet(cfg).to(device)
    24. # Optimizer
    25. optimizer = optim.SGD(model.parameters(), lr=hyp['lr0'], momentum=hyp['momentum'], weight_decay=hyp['weight_decay'])
    26. cutoff = -1 # backbone reaches to cutoff layer
    27. start_epoch = 0
    28. best_fitness = 0.0
    29. """
    30. 这边的代码学习意义很大。具体包括:
    31. 1. 如何迁移学习
    32. 2. 如何在上一次训练的基础上继续训练
    33. 3. 如何保存训练的中间结果
    34. """
    35. # 迁移学习或者加载之前训练成果的代码
    36. if opt.resume or opt.transfer: # Load previously saved model
    37. # 迁移学习
    38. if opt.transfer: # Transfer learning
    39. # 获得yolo_layer的size
    40. nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters']) # yolo layer size (i.e. 255)
    41. # torch.load加载预训练好的模型,weights是文件夹路径, map_location可以根据情况选择加载到GPU还是CPU. device = torch_utils.select_device()
    42. chkpt = torch.load(weights + 'yolov3-spp.pt', map_location=device)
    43. # k指层的名字name,v指权重/参数param。如果有权重且v不是yolo层的前一层,那就加载权重到model, strict,默认是True,表示预训练模型的层和自己定义的网络结构层严格对应相等(比如层名和维度)
    44. model.load_state_dict({k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != 255},
    45. strict=False)
    46. # 对model中的每层的参数,注意!不是每个参数
    47. for p in model.parameters():
    48. #requires_grad表示是否进行梯度更新。只有yolo层的前一层需要
    49. p.requires_grad = True if p.shape[0] == nf else False
    50. else: # resume from last.pt
    51. if opt.bucket:
    52. os.system('gsutil cp gs://%s/last.pt %s' % (opt.bucket, last)) # download from bucket
    53. chkpt = torch.load(last, map_location=device) # load checkpoint
    54. model.load_state_dict(chkpt['model'])
    55. # 除了要加载checkpoint中的模型,优化函数的参数可能也随着训练改变了,因此还需要加载优化函数的参数
    56. if chkpt['optimizer'] is not None:
    57. optimizer.load_state_dict(chkpt['optimizer'])
    58. best_fitness = chkpt['best_fitness']
    59. # 作者还设置了一个training_results用来保存之前的训练结果
    60. if chkpt['training_results'] is not None:
    61. with open('results.txt', 'w') as file:
    62. file.write(chkpt['training_results']) # write results.txt
    63. start_epoch = chkpt['epoch'] + 1
    64. del chkpt
    65. #既不迁移学习也不加载过去的训练模型
    66. else: # Initialize model with backbone (optional)
    67. #load_darknet_weights是作者写的函数,用来加载权重
    68. if '-tiny.cfg' in cfg:
    69. cutoff = load_darknet_weights(model, weights + 'yolov3-tiny.conv.15')
    70. else:
    71. cutoff = load_darknet_weights(model, weights + 'darknet53.conv.74')
    72. # Remove old results
    73. # glob.glob相加只是单纯的罗列所有文件,把所有过去的结果都删除
    74. for f in glob.glob('*_batch*.jpg') + glob.glob('results.txt'):
    75. os.remove(f)
    76. # Scheduler https://github.com/ultralytics/yolov3/issues/238
    77. # lf = lambda x: 1 - x / epochs # linear ramp to zero
    78. # lf = lambda x: 10 ** (hyp['lrf'] * x / epochs) # exp ramp
    79. # lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs)) # inverse exp ramp
    80. # scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    81. #一个调整学习率的策略,milestones表示多少次变一次学习率
    82. scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in (0.8, 0.9)], gamma=0.1)
    83. #设置初始时的学习率
    84. scheduler.last_epoch = start_epoch - 1
    85. # # Plot lr schedule
    86. # y = []
    87. # for _ in range(epochs):
    88. # scheduler.step()
    89. # y.append(optimizer.param_groups[0]['lr'])
    90. # plt.plot(y, label='LambdaLR')
    91. # plt.xlabel('epoch')
    92. # plt.ylabel('LR')
    93. # plt.tight_layout()
    94. # plt.savefig('LR.png', dpi=300)
    95. # Dataset
    96. # 加载数据集
    97. '''
    98. LoadImagesAndLabels是作者写的读取数据的类
    99. getitem返回的包括:
    100. img, labels, img_path, (h,w)
    101. 其中labels:image_id, class, x, y, w, h, 表示位置的大小都是0-1
    102. '''
    103. dataset = LoadImagesAndLabels(train_path,
    104. img_size,
    105. batch_size,
    106. augment=True,
    107. rect=opt.rect) # rectangular training
    108. # Initialize distributed training
    109. # 分布式训练, 我实际使用的是需要改代码的,有张显卡不能用所以要限制其使用的显卡
    110. if torch.cuda.device_count() > 1:
    111. dist.init_process_group(backend='nccl', # 'distributed backend'
    112. init_method='tcp://127.0.0.1:9999', # distributed training init method
    113. world_size=1, # number of nodes for distributed training
    114. rank=0) # distributed training node rank
    115. model = torch.nn.parallel.DistributedDataParallel(model)
    116. # sampler = torch.utils.data.distributed.DistributedSampler(dataset)
    117. # Dataloader
    118. dataloader = DataLoader(dataset,
    119. batch_size=batch_size,
    120. num_workers=opt.num_workers,
    121. shuffle=not opt.rect, # Shuffle=True unless rectangular training is used
    122. pin_memory=True,
    123. collate_fn=dataset.collate_fn)
    124. # Mixed precision training https://github.com/NVIDIA/apex
    125. mixed_precision = True
    126. if mixed_precision:
    127. try:
    128. from apex import amp
    129. model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
    130. except: # not installed: install help: https://github.com/NVIDIA/apex/issues/259
    131. mixed_precision = False
    132. # Start training
    133. model.hyp = hyp # attach hyperparameters to model
    134. # model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
    135. model_info(model, report='summary') # 'full' or 'summary'
    136. nb = len(dataloader)
    137. maps = np.zeros(nc) # mAP per class
    138. results = (0, 0, 0, 0, 0) # P, R, mAP, F1, test_loss
    139. n_burnin = min(round(nb / 5 + 1), 1000) # burn-in batches
    140. t, t0 = time.time(), time.time()
    141. torch.cuda.empty_cache()
    142. # 训练过程
    143. for epoch in range(start_epoch, epochs):
    144. # 将model.training设置成true
    145. model.train()
    146. print(('\n%8s%12s' + '%10s' * 7) %
    147. ('Epoch', 'Batch', 'GIoU/xy', 'wh', 'obj', 'cls', 'total', 'targets', 'img_size'))
    148. # Update scheduler
    149. scheduler.step()
    150. # Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
    151. freeze_backbone = False
    152. if freeze_backbone and epoch < 2:
    153. for name, p in model.named_parameters():
    154. if int(name.split('.')[1]) < cutoff: # if layer < 75
    155. p.requires_grad = False if epoch == 0 else True
    156. # # Update image weights (optional)
    157. # w = model.class_weights.cpu().numpy() * (1 - maps) # class weights
    158. # image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
    159. # dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n) # random weighted index
    160. mloss = torch.zeros(5).to(device) # mean losses
    161. pbar = tqdm(enumerate(dataloader), total=nb) # progress bar
    162. for i, (imgs, targets, paths, _) in pbar:
    163. imgs = imgs.to(device)
    164. targets = targets.to(device)
    165. # Multi-Scale training TODO: short-side to 32-multiple https://github.com/ultralytics/yolov3/issues/358
    166. if multi_scale:
    167. if (i + nb * epoch) / accumulate % 10 == 0: # adjust (67% - 150%) every 10 batches
    168. img_size = random.choice(range(img_size_min, img_size_max + 1)) * 32
    169. # print('img_size = %g' % img_size)
    170. scale_factor = img_size / max(imgs.shape[-2:])
    171. imgs = F.interpolate(imgs, scale_factor=scale_factor, mode='bilinear', align_corners=False)
    172. # Plot images with bounding boxes
    173. if epoch == 0 and i == 0:
    174. plot_images(imgs=imgs, targets=targets, paths=paths, fname='train_batch%g.jpg' % i)
    175. # SGD burn-in
    176. if epoch == 0 and i <= n_burnin:
    177. lr = hyp['lr0'] * (i / n_burnin) ** 4
    178. for x in optimizer.param_groups:
    179. x['lr'] = lr
    180. # Run model
    181. pred = model(imgs)
    182. # Compute loss
    183. # compute_loss是作者自己写的,是重点章节,哎哟真不容易,总算到重点章节了
    184. loss, loss_items = compute_loss(pred, targets, model, giou_loss=not opt.xywh)
    185. if torch.isnan(loss):
    186. print('WARNING: nan loss detected, ending training')
    187. return results
    188. # Compute gradient
    189. if mixed_precision:
    190. with amp.scale_loss(loss, optimizer) as scaled_loss:
    191. scaled_loss.backward()
    192. else:
    193. loss.backward()
    194. # Accumulate gradient for x batches before optimizing
    195. if (i + 1) % accumulate == 0 or (i + 1) == nb:
    196. optimizer.step()
    197. optimizer.zero_grad()
    198. # Print batch results
    199. # 这段蛮有教学意义的, tqdm怎么显示信息
    200. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
    201. # s = ('%8s%12s' + '%10.3g' * 7) % ('%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), time.time() - t)
    202. s = ('%8s%12s' + '%10.3g' * 7) % (
    203. '%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nb - 1), *mloss, len(targets), img_size)
    204. t = time.time()
    205. pbar.set_description(s) # print(s)
    206. # Report time
    207. # dt = (time.time() - t0) / 3600
    208. # print('%g epochs completed in %.3f hours.' % (epoch - start_epoch + 1, dt))
    209. # Calculate mAP (always test final epoch, skip first 5 if opt.nosave)
    210. if not (opt.notest or (opt.nosave and epoch < 10)) or epoch == epochs - 1:
    211. with torch.no_grad():
    212. # 这里用到了作者额外写的一个类 test.py 用于getmAP和loss after each epoch
    213. results, maps = test.test(cfg, data_cfg, batch_size=batch_size, img_size=opt.img_size, model=model,
    214. conf_thres=0.1)
    215. # Write epoch results
    216. with open('results.txt', 'a') as file:
    217. file.write(s + '%11.3g' * 5 % results + '\n') # P, R, mAP, F1, test_loss
    218. # Update best map
    219. fitness = results[2]
    220. if fitness > best_fitness:
    221. best_fitness = fitness
    222. # Save training results
    223. # 保存训练结果和checkpoint
    224. save = (not opt.nosave) or ((not opt.evolve) and (epoch == epochs - 1))
    225. if save:
    226. with open('results.txt', 'r') as file:
    227. # Create checkpoint
    228. chkpt = {'epoch': epoch,
    229. 'best_fitness': best_fitness,
    230. 'training_results': file.read(),
    231. 'model': model.module.state_dict() if type(
    232. model) is nn.parallel.DistributedDataParallel else model.state_dict(),
    233. 'optimizer': optimizer.state_dict()}
    234. # Save last checkpoint
    235. torch.save(chkpt, last)
    236. if opt.bucket:
    237. os.system('gsutil cp %s gs://%s' % (last, opt.bucket)) # upload to bucket
    238. # Save best checkpoint
    239. # mAP是评价检测性能的极佳指标,best_fitness用来记录当前最好的检测性能。best_fitness初始化为0.0
    240. if best_fitness == fitness:
    241. torch.save(chkpt, best)
    242. # Save backup every 10 epochs (optional)
    243. # 保存中间结果
    244. if epoch > 0 and epoch % 10 == 0:
    245. torch.save(chkpt, weights + 'backup%g.pt' % epoch)
    246. # Delete checkpoint
    247. del chkpt
    248. return results

    上文的重点梳理。

    1. torch.load(map_location=), cpu与gpu load时相互转化
    2. model.load_state_dict(strict=), strict默认是True,表示预训练模型的层和自己定义的网络结构层严格对应相等(比如层名和维度)
    3. model.parameters(),看源码可以发现本质上来源于named_parameters(),后者是(name, param),前者只有param
    4. requires_grad, 是否进行梯度更新

    补充知识

    1. 加载预训练模型的权重
    resnet152 = models.resnet152(pretrained=True) 
    pretrained_dict = resnet152.state_dict() 
    """
    加载torchvision中的预训练模型和参数后通过state_dict()方法提取参数    
    也可以直接从官方model_zoo下载:    
    pretrained_dict = model_zoo.load_url(model_urls['resnet152'])""" 
    model_dict = model.state_dict() 
    # 将pretrained_dict里不属于model_dict的键剔除掉 
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} 
    # 更新现有的model_dict 
    model_dict.update(pretrained_dict) 
    # 加载我们真正需要的state_dict 
    model.load_state_dict(model_dict)
    


    下面的暂时没看,没我需要的重点

    def print_mutation(hyp, results):
        # Write mutation results
        a = '%11s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
        b = '%11.4g' * len(hyp) % tuple(hyp.values())  # hyperparam values
        c = '%11.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss)
        print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
    
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt
            with open('evolve.txt', 'a') as f:  # append result
                f.write(c + b + '\n')
            os.system('gsutil cp evolve.txt gs://%s' % opt.bucket)  # upload evolve.txt
        else:
            with open('evolve.txt', 'a') as f:
                f.write(c + b + '\n')
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--epochs', type=int, default=100, help='number of epochs')
        parser.add_argument('--batch-size', type=int, default=16, help='batch size')
        parser.add_argument('--accumulate', type=int, default=4, help='number of batches to accumulate before optimizing')
        parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
        parser.add_argument('--data-cfg', type=str, default='data/coco_64img.data', help='coco.data file path')
        parser.add_argument('--multi-scale', action='store_true', help='train at (1/1.5)x - 1.5x sizes')
        parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', action='store_true', help='resume training flag')
        parser.add_argument('--transfer', action='store_true', help='transfer learning flag')
        parser.add_argument('--num-workers', type=int, default=4, help='number of Pytorch DataLoader workers')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--xywh', action='store_true', help='use xywh loss instead of GIoU loss')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--var', default=0, type=int, help='debug variable')
        opt = parser.parse_args()
        print(opt)
    
        if opt.evolve:
            opt.notest = True  # only test final epoch
            opt.nosave = True  # only save final checkpoint
    
        # Train
        results = train(opt.cfg,
                        opt.data_cfg,
                        img_size=opt.img_size,
                        epochs=opt.epochs,
                        batch_size=opt.batch_size,
                        accumulate=opt.accumulate)
    
        # Evolve hyperparameters (optional)
        if opt.evolve:
            gen = 1000  # generations to evolve
            print_mutation(hyp, results)  # Write mutation results
    
            for _ in range(gen):
                # Get best hyperparameters
                x = np.loadtxt('evolve.txt', ndmin=2)
                fitness = x[:, 2] * 0.5 + x[:, 3] * 0.5  # fitness as weighted combination of mAP and F1
                x = x[fitness.argmax()]  # select best fitness hyps
                for i, k in enumerate(hyp.keys()):
                    hyp[k] = x[i + 5]
    
                # Mutate
                init_seeds(seed=int(time.time()))
                s = [.15, .15, .15, .15, .15, .15, .15, .15, .15, .00, .05, .10]  # fractional sigmas
                for i, k in enumerate(hyp.keys()):
                    x = (np.random.randn(1) * s[i] + 1) ** 2.0  # plt.hist(x.ravel(), 300)
                    hyp[k] *= float(x)  # vary by 20% 1sigma
    
                # Clip to limits
                keys = ['lr0', 'iou_t', 'momentum', 'weight_decay']
                limits = [(1e-4, 1e-2), (0.00, 0.70), (0.60, 0.95), (0, 0.01)]
                for k, v in zip(keys, limits):
                    hyp[k] = np.clip(hyp[k], v[0], v[1])
    
                # Train mutation
                results = train(opt.cfg,
                                opt.data_cfg,
                                img_size=opt.img_size,
                                epochs=opt.epochs,
                                batch_size=opt.batch_size,
                                accumulate=opt.accumulate)
    
                # Write mutation results
                print_mutation(hyp, results)
    
                # # Plot results
                # import numpy as np
                # import matplotlib.pyplot as plt
                # a = np.loadtxt('evolve_1000val.txt')
                # x = a[:, 2] * a[:, 3]  # metric = mAP * F1
                # weights = (x - x.min()) ** 2
                # fig = plt.figure(figsize=(14, 7))
                # for i in range(len(hyp)):
                #     y = a[:, i + 5]
                #     mu = (y * weights).sum() / weights.sum()
                #     plt.subplot(2, 5, i+1)
                #     plt.plot(x.max(), mu, 'o')
                #     plt.plot(x, y, '.')
                #     print(list(hyp.keys())[i],'%.4g' % mu)