这边是重点中的重点了,如何计算loss和各种评价指标。
按照我的优先级,先重点看loss计算的代码。(事实上花时间在这代码上有两天了,还是有很多问题)
import globimport randomimport cv2import matplotlibimport matplotlib.pyplot as pltimport numpy as npimport torchimport torch.nn as nnfrom PIL import Imagefrom tqdm import tqdmfrom pathlib import Pathfrom . import torch_utils # , google_utilsmatplotlib.rc('font', **{'size': 11})# Set printoptionstorch.set_printoptions(linewidth=1320, precision=5, profile='long')np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5# Prevent OpenCV from multithreading (to use PyTorch DataLoader)cv2.setNumThreads(0)def float3(x): # format floats to 3 decimalsreturn float(format(x, '.3f'))def init_seeds(seed=0):random.seed(seed)np.random.seed(seed)torch_utils.init_seeds(seed=seed)def load_classes(path):# Loads *.names file at 'path'with open(path, 'r') as f:names = f.read().split('\n')return list(filter(None, names)) # filter removes empty strings (such as last line)def model_info(model, report='summary'):# Plots a line-by-line description of a PyTorch modeln_p = sum(x.numel() for x in model.parameters()) # number parametersn_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradientsif report is 'full':print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))for i, (name, p) in enumerate(model.named_parameters()):name = name.replace('module_list.', '')print('%5g %40s %9s %12g %20s %10.3g %10.3g' %(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))print('Model Summary: %g layers, %g parameters, %g gradients' % (len(list(model.parameters())), n_p, n_g))def labels_to_class_weights(labels, nc=80):# Get class weights (inverse frequency) from training labelslabels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCOclasses = labels[:, 0].astype(np.int) # labels = [class xywh]weights = np.bincount(classes, minlength=nc) # occurences per classweights[weights == 0] = 1 # replace empty bins with 1weights = 1 / weights # number of targets per classweights /= weights.sum() # normalizereturn torch.Tensor(weights)def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):# Produces image weights based on class mAPsn = len(labels)class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)# index = random.choices(range(n), weights=image_weights, k=1) # weight image samplereturn image_weightsdef coco_class_weights(): # frequency of each class in coco train2014n = [187437, 4955, 30920, 6033, 3838, 4332, 3160, 7051, 7677, 9167, 1316, 1372, 833, 6757, 7355, 3302, 3776, 4671,6769, 5706, 3908, 903, 3686, 3596, 6200, 7920, 8779, 4505, 4272, 1862, 4698, 1962, 4403, 6659, 2402, 2689,4012, 4175, 3411, 17048, 5637, 14553, 3923, 5539, 4289, 10084, 7018, 4314, 3099, 4638, 4939, 5543, 2038, 4004,5053, 4578, 27292, 4113, 5931, 2905, 11174, 2873, 4036, 3415, 1517, 4122, 1980, 4464, 1190, 2302, 156, 3933,1877, 17630, 4337, 4624, 1075, 3468, 135, 1380]weights = 1 / torch.Tensor(n)weights /= weights.sum()return weightsdef coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')# x = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to cocox = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]return x
有教学意义的教你如何网络初始化,但其实作者没用
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.03)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.03)
torch.nn.init.constant_(m.bias.data, 0.0)
一些常用的函数
def xyxy2xywh(x):
# Convert bounding box format from [x1, y1, x2, y2] to [x, y, w, h]
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2
y[:, 1] = (x[:, 1] + x[:, 3]) / 2
y[:, 2] = x[:, 2] - x[:, 0]
y[:, 3] = x[:, 3] - x[:, 1]
return y
def xywh2xyxy(x):
# Convert bounding box format from [x, y, w, h] to [x1, y1, x2, y2]
y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
下面的代码暂时没用得上,没看
def scale_coords(img1_shape, coords, img0_shape):
# Rescale coords (xyxy) from img1_shape to img0_shape
gain = max(img1_shape) / max(img0_shape) # gain = old / new
coords[:, [0, 2]] -= (img1_shape[1] - img0_shape[1] * gain) / 2 # x padding
coords[:, [1, 3]] -= (img1_shape[0] - img0_shape[0] * gain) / 2 # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords
def clip_coords(boxes, img_shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=img_shape[1]) # clip x
boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=img_shape[0]) # clip y
要看还没看的关于计算mAP的代码
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (list).
conf: Objectness value from 0-1 (list).
pred_cls: Predicted object classes (list).
target_cls: True object classes (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
ap, p, r = [], [], []
for c in unique_classes:
i = pred_cls == c
n_gt = (target_cls == c).sum() # Number of ground truth objects
n_p = i.sum() # Number of predicted objects
if n_p == 0 and n_gt == 0:
continue
elif n_p == 0 or n_gt == 0:
ap.append(0)
r.append(0)
p.append(0)
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum()
tpc = (tp[i]).cumsum()
# Recall
recall_curve = tpc / (n_gt + 1e-16)
r.append(recall_curve[-1])
# Precision
precision_curve = tpc / (tpc + fpc)
p.append(precision_curve[-1])
# AP from recall-precision curve
ap.append(compute_ap(recall_curve, precision_curve))
# Plot
# plt.plot(recall_curve, precision_curve)
# Compute F1 score (harmonic mean of precision and recall)
p, r, ap = np.array(p), np.array(r), np.array(ap)
f1 = 2 * p * r / (p + r + 1e-16)
return p, r, ap, f1, unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
iou的计算方法(包括GIoU的计算)
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False):
# 这边注意一下,作者的注释已经说了, box1维度(4,), box2可以是多个框的信息(n, 4)
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.t()
# Get the coordinates of bounding boxes
if x1y1x2y2:
# x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else:
# x, y, w, h = box1
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter_area = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
union_area = ((b1_x2 - b1_x1) * (b1_y2 - b1_y1) + 1e-16) + \
(b2_x2 - b2_x1) * (b2_y2 - b2_y1) - inter_area
iou = inter_area / union_area # iou
if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
c_x1, c_x2 = torch.min(b1_x1, b2_x1), torch.max(b1_x2, b2_x2)
c_y1, c_y2 = torch.min(b1_y1, b2_y1), torch.max(b1_y2, b2_y2)
c_area = (c_x2 - c_x1) * (c_y2 - c_y1) # convex area
return iou - (c_area - union_area) / c_area # GIoU
return iou
def wh_iou(box1, box2):
# 这边注意一下,作者的注释已经说了, box1维度(2,), box2可以是多个框的信息(n, 2)
# Returns the IoU of wh1 to wh2. wh1 is 2, wh2 is nx2
box2 = box2.t()
# w, h = box1
w1, h1 = box1[0], box1[1]
w2, h2 = box2[0], box2[1]
# Intersection area
inter_area = torch.min(w1, w2) * torch.min(h1, h2)
# Union Area
union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
return inter_area / union_area # iou
重中之中,计算loss的代码
yolov3论文中的loss计算方法如下图所示。

说明一下p, 在模型的输出中
- if self.training
output.append(YOLOLayer层的输出), yolo层的输出在训练时为(bs, 3, ng, ng, 85), ng是该层的特征图尺寸
return output, output维度(3, pi), 其中pi(bs, 3, ng, ng, 85) - else
output.append(YOLOLayer层的输出), yolo层的输出包括:io(bs, ng*ng*3, 85), p(bs, 3, ng, ng, 85)
io, p = list(zip(*output)), 做变形
io = torch.cat(io, 1) # 从左往右拼接, 拼接以后的维度应该是(bs, 3549, 85)
return io, p, p维度(3, pi), 其中pi(bs, 3, ng, ng, 85)
def compute_loss(p, targets, model, giou_loss=True): # predictions, targets, model
'''
train时直接传p, 测试时时model的输出是io和p,这边传的是第二个输出。维度都是p(3, pi), 其中pi(bs, 3, ng, ng, 85)
targets来源于真实标注,维度(num_of_labels(a batch), 6),第二个维度的六个值包括(image_id, class, x, y, w, h)
'''
# ft相当于是定义了一种格式
ft = torch.cuda.FloatTensor if p[0].is_cuda else torch.Tensor
lxy, lwh, lcls, lobj = ft([0]), ft([0]), ft([0]), ft([0])
'''
txy: (3, num_of_usedAnchors,2)
twh: (3, num_of_usedAnchors, 2)
tcls: (for循环三轮下来之后)(3, num_of_usedAnchors)
tbox: (3, num_of_usedAnchors, 4)
indices: (3, (b,a,gj,gi)); b:(num_of_usedAnchors, ), a:(num_of_usedAnchors, ), gj:(num_of_usedAnchors, ), gi:(num_of_usedAnchors, )
anchor_vec: (3, num_of_usedAnchors, 2)
'''
txy, twh, tcls, tbox, indices, anchor_vec = build_targets(model, targets)
# 获取模型的参数
h = model.hyp # hyperparameters
# Define criteria
# MSELoss指均方损失函数, MSELoss(x,y) = (x-y)^2
MSE = nn.MSELoss()
'''
h['cls_pw']: 1.957, # cls BCELoss positive_weight,权重值
h['obj_pw']: 2.894, # obj BCELoss positive_weight,权重值
'''
BCEcls = nn.BCEWithLogitsLoss(pos_weight=ft([h['cls_pw']])) # class类别的损失函数
BCEobj = nn.BCEWithLogitsLoss(pos_weight=ft([h['obj_pw']])) # object置信度的损失函数
# CE = nn.CrossEntropyLoss() # (weight=model.class_weights)
# Compute losses
bs = p[0].shape[0] # batch size
k = bs / 64 # loss gain
for i, pi0 in enumerate(p): # layer i predictions, i
# p(3, pi0), 其中pi0(bs, 3, ng, ng, 85)
# b:(num_of_usedAnchors, ), a:(num_of_usedAnchors, ), gj:(num_of_usedAnchors, ), gi:(num_of_usedAnchors, )
b, a, gj, gi = indices[i] # image_id, anchor, gridy, gridx
# tobj: (bs, 3, ng, ng)
tobj = torch.zeros_like(pi0[..., 0]) # target obj
# Compute losses
# 在这一层中能检测出的labels数量
nb = len(b)
if nb: # number of targets
# 如果这一层能检测出真实label, 即有正样本,那就需要算一下lxy + lwh + lcls, 负样本的lxy + lwh + lcls则不需要算
# pi0是第i个yolo层的输出,pi指在第b张图,第a个anchor,第gj,gi个网格处的检测结果,维度:(num_of_usedAnchors, 85)
pi = pi0[b, a, gj, gi] # predictions closest to anchors
# tobj: 在第b张图,第a个anchor,第gj,gi个网格处检测结果的置信度
tobj[b, a, gj, gi] = 1.0 # obj
# pi[..., 2:4] = torch.sigmoid(pi[..., 2:4]) # wh power loss (uncomment)
if giou_loss:
pbox = torch.cat((torch.sigmoid(pi[..., 0:2]), torch.exp(pi[..., 2:4]) * anchor_vec[i]), 1) # predicted
# 算giou的值
giou = bbox_iou(pbox.t(), tbox[i], x1y1x2y2=False, GIoU=True) # giou computation
# lxy += k * 权重 * mean(1-giou)
lxy += (k * h['giou']) * (1.0 - giou).mean() # giou loss
else:
# 不使用giou_loss的正常yolo_loss计算, 公式为lxy + lwh + lobj + lcls
# lxy += k * 权重 * xy的均方误差
lxy += (k * h['xy']) * MSE(torch.sigmoid(pi[..., 0:2]), txy[i]) # xy loss
# lwh += k * 权重 * wh的均方误差
lwh += (k * h['wh']) * MSE(pi[..., 2:4], twh[i]) # wh yolo loss
# tclsm用来存储真实类别: (num_of_usedAnchors, 80)
tclsm = torch.zeros_like(pi[..., 5:])
# tcls[i]: (num_of_usedAnchors), 表示的是类别数
tclsm[range(nb), tcls[i]] = 1.0
# 算类别loss, lcls += k * 权重 * BCEcls(80种类别)
lcls += (k * h['cls']) * BCEcls(pi[..., 5:], tclsm) # cls loss (BCE)
# lcls += (k * h['cls']) * CE(pi[..., 5:], tcls[i]) # cls loss (CE)
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
# object置信度的loss, lobj += k * 权重 * BCEobj(obj置信度)
lobj += (k * h['obj']) * BCEobj(pi0[..., 4], tobj) # obj loss
'''
这边做个解释,如果这个位置是负样本,那就只算lobj
如果是正样本,还要算lxy + lwh + lcls
'''
loss = lxy + lwh + lobj + lcls
return loss, torch.cat((lxy, lwh, lobj, lcls, loss)).detach()
下面的代码是计算loss前的准备工作。它把图像的真实标注和anchor进行比对, 和网络的输出同步(一致),从而用来计算
def build_targets(model, targets):
# targets来源于真实标注,维度(num_of_labels(a batch), 6),第二个维度的六个值包括(image_id, class, x, y, w, h)
#得到iou的阈值,低于这个阈值的将被舍弃。下面关于iou阈值有个更详细的解释
iou_thres = model.hyp['iou_t'] # hyperparameter
if type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel):
model = model.module
nt = len(targets) # nums_of_labels(a batch)
# 这个是我想要的东西,先初始化
txy, twh, tcls, tbox, indices, anchor_vec = [], [], [], [], [], []
for i in model.yolo_layers:
# 找到所有的yolo层, 一共有三个yolo层,要循环三次
layer = model.module_list[i][0]
# iou of targets-anchors
t, a = targets, [] # t来自targets, 用于处理变形, a用来存储我需要的anchors
gwh = t[:, 4:6] * layer.ng # # groundTruth wh 从[0,1]区间根据特征图尺寸放大, (num_of_labels(a batch), 2)
# 作者写的代码,实际上不应该出现nt==0的情况
if nt:
# layer.anchor_vec(3, 2)
# wh_iou(box1, box2)计算两个box的iou, 其实box2可为多个框的信息,利用了python的广播机制,维度是(num_of_labels(a batch), 2), torch.stack以后维度是(num_of_labels(a batch) * num_of_anchors, 1)
iou = torch.stack([wh_iou(x, gwh) for x in layer.anchor_vec], 0)
use_best_anchor = False
if use_best_anchor:
iou, a = iou.max(0) # best iou and anchor
else: # use all anchors
# number of anchors anchors的数量,应该是3
na = len(layer.anchor_vec)
# a: (3, )->(3,1)->(3, num_of_labels(a batch))->(3*num_of_labels(a batch), ), 即(num_of_labels(a batch)*num_of_anchors, )
a = torch.arange(na).view((-1, 1)).repeat([1, nt]).view(-1)
# t: (num_of_labels(a batch), 6)->(num_of_labels(a batch)*num_of_anchors, 6)
t = targets.repeat([na, 1])
# gwh: (num_of_labels(a batch), 2)->(num_of_labels(a batch)*num_of_anchors, 2)
gwh = gwh.repeat([na, 1])
# iou: (num_of_labels(a batch) * num_of_anchors, 1)->(num_of_labels(a batch) * num_of_anchors, )
iou = iou.view(-1) # use all ious
# reject anchors below iou_thres (OPTIONAL, increases P, lowers R)
reject = True
if reject:
# j: (num_of_labels(a batch) * num_of_anchors, ), 全由0/1构成
j = iou > iou_thres
# 这里很细节!!tensor1[tensor2]见简书, 得到的是t中满足iou>iou_thres的信息,将满足的数量记为 (num_of_usedAnchors, _)
# t: (num_of_usedAnchors, 6), a: (num_of_usedAnchors, ), gwh: (num_of_usedAnchors, 2)
t, a, gwh = t[j], a[j], gwh[j]
# Indices
# tensor.long()将tensor转为Long类型的张量, long即长整形
# b: img_id, (num_of_usedAnchors, ), c: class, (num_of_usedAnchors, )
b, c = t[:, :2].long().t() # target image, class
# gxy: 中心点在该特征图上的坐标 (num_of_usedAnchors, 2)
gxy = t[:, 2:4] * layer.ng # grid x, y
# gi, gj: (num_of_trueAnchors, 2)->2个(num_of_usedAnchors, ), 表示网格的坐标
gi, gj = gxy.long().t() # grid x, y indices
# indices: (for循环三轮下来之后)(3, (b,a,gj,gi))
# b:(num_of_usedAnchors, ), a:(num_of_usedAnchors, ), gj:(num_of_usedAnchors, ), gi:(num_of_usedAnchors, )
indices.append((b, a, gj, gi))
# XY coordinates
# gxy: 得到中心点在某个网格上的坐标 (num_of_usedAnchors,2)
gxy -= gxy.floor()
# txy: (for循环三轮下来之后)(3, num_of_usedAnchors,2)
txy.append(gxy)
# GIoU, CVPR2019中新的衡量标准
# xywh (grids) 基于某个网格的信息存到tbox中,也是网络希望得到的结果
# tbox: (for循环三轮下来之后)(3, num_of_usedAnchors, 4)
tbox.append(torch.cat((gxy, gwh), 1)) # xywh (grids)
# a是满足iou>iou_thres的anchor信息(存的是编号), (num_of_usedAnchors, )。layer.anchor_vec:(3,2)。
# layer.anchor_vec[a]: (num_of_usedAnchors, 2)
# anchor_vec: 满足iou>iou_thres的anchor信息(存的是值)(for循环三轮下来之后)(3, num_of_usedAnchors, 2)
anchor_vec.append(layer.anchor_vec[a])
# Width and height
# twh: (for循环三轮下来之后)(3, num_of_usedAnchors, 2)
'''
下面一行代码解释一下。
让我们回想一下网络得到的xywh是怎么变成我们真正想要的值的呢?没错!
xy = sigmoid(xy) + offset
wh = exp(wh) * anchor_wh
所以这边我们希望得到的twh应该逆处理一下
'''
twh.append(torch.log(gwh / layer.anchor_vec[a])) # wh yolo method
# twh.append((gwh / layer.anchor_vec[a]) ** (1 / 3) / 2) # wh power method
# Class
# tcls: (for循环三轮下来之后)(3, num_of_usedAnchors)
tcls.append(c)
if c.shape[0]:
assert c.max() <= layer.nc, 'Target classes exceed model classes'
# txy: (3, num_of_usedAnchors,2)
# twh: (3, num_of_usedAnchors, 2)
# tcls: (for循环三轮下来之后)(3, num_of_usedAnchors)
# tbox: (3, num_of_usedAnchors, 4)
# indices: (3, (b,a,gj,gi)); b:(num_of_usedAnchors, ), a:(num_of_usedAnchors, ), gj:(num_of_usedAnchors, ), gi:(num_of_usedAnchors, )
# anchor_vec: (3, num_of_usedAnchors, 2)
return txy, twh, tcls, tbox, indices, anchor_vec
def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.5):
"""
Removes detections with lower object confidence score than 'conf_thres'
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_conf, class)
"""
min_wh = 2 # (pixels) minimum box width and height
output = [None] * len(prediction)
for image_i, pred in enumerate(prediction):
# Experiment: Prior class size rejection
# x, y, w, h = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3]
# a = w * h # area
# ar = w / (h + 1e-16) # aspect ratio
# n = len(w)
# log_w, log_h, log_a, log_ar = torch.log(w), torch.log(h), torch.log(a), torch.log(ar)
# shape_likelihood = np.zeros((n, 60), dtype=np.float32)
# x = np.concatenate((log_w.reshape(-1, 1), log_h.reshape(-1, 1)), 1)
# from scipy.stats import multivariate_normal
# for c in range(60):
# shape_likelihood[:, c] =
# multivariate_normal.pdf(x, mean=mat['class_mu'][c, :2], cov=mat['class_cov'][c, :2, :2])
# Multiply conf by class conf to get combined confidence
class_conf, class_pred = pred[:, 5:].max(1)
pred[:, 4] *= class_conf
# Select only suitable predictions
i = (pred[:, 4] > conf_thres) & (pred[:, 2:4] > min_wh).all(1) & torch.isfinite(pred).all(1)
pred = pred[i]
# If none are remaining => process next image
if len(pred) == 0:
continue
# Select predicted classes
class_conf = class_conf[i]
class_pred = class_pred[i].unsqueeze(1).float()
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
pred[:, :4] = xywh2xyxy(pred[:, :4])
# pred[:, 4] *= class_conf # improves mAP from 0.549 to 0.551
# Detections ordered as (x1y1x2y2, obj_conf, class_conf, class_pred)
pred = torch.cat((pred[:, :5], class_conf.unsqueeze(1), class_pred), 1)
# Get detections sorted by decreasing confidence scores
pred = pred[(-pred[:, 4]).argsort()]
det_max = []
nms_style = 'MERGE' # 'OR' (default), 'AND', 'MERGE' (experimental)
for c in pred[:, -1].unique():
dc = pred[pred[:, -1] == c] # select class c
n = len(dc)
if n == 1:
det_max.append(dc) # No NMS required if only 1 prediction
continue
elif n > 100:
dc = dc[:100] # limit to first 100 boxes: https://github.com/ultralytics/yolov3/issues/117
# Non-maximum suppression
if nms_style == 'OR': # default
# METHOD1
# ind = list(range(len(dc)))
# while len(ind):
# j = ind[0]
# det_max.append(dc[j:j + 1]) # save highest conf detection
# reject = (bbox_iou(dc[j], dc[ind]) > nms_thres).nonzero()
# [ind.pop(i) for i in reversed(reject)]
# METHOD2
while dc.shape[0]:
det_max.append(dc[:1]) # save highest conf detection
if len(dc) == 1: # Stop if we're at the last detection
break
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'AND': # requires overlap, single boxes erased
while len(dc) > 1:
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
if iou.max() > 0.5:
det_max.append(dc[:1])
dc = dc[1:][iou < nms_thres] # remove ious > threshold
elif nms_style == 'MERGE': # weighted mixture box
while len(dc):
if len(dc) == 1:
det_max.append(dc)
break
i = bbox_iou(dc[0], dc) > nms_thres # iou with other boxes
weights = dc[i, 4:5]
dc[0, :4] = (weights * dc[i, :4]).sum(0) / weights.sum()
det_max.append(dc[:1])
dc = dc[i == 0]
elif nms_style == 'SOFT': # soft-NMS https://arxiv.org/abs/1704.04503
sigma = 0.5 # soft-nms sigma parameter
while len(dc):
if len(dc) == 1:
det_max.append(dc)
break
det_max.append(dc[:1])
iou = bbox_iou(dc[0], dc[1:]) # iou with other boxes
dc = dc[1:]
dc[:, 4] *= torch.exp(-iou ** 2 / sigma) # decay confidences
# dc = dc[dc[:, 4] > nms_thres] # new line per https://github.com/ultralytics/yolov3/issues/362
if len(det_max):
det_max = torch.cat(det_max) # concatenate
output[image_i] = det_max[(-det_max[:, 4]).argsort()] # sort
return output
def get_yolo_layers(model):
bool_vec = [x['type'] == 'yolo' for x in model.module_defs]
return [i for i, x in enumerate(bool_vec) if x] # [82, 94, 106] for yolov3
def strip_optimizer_from_checkpoint(filename='weights/best.pt'):
# Strip optimizer from *.pt files for lighter files (reduced by 2/3 size)
a = torch.load(filename, map_location='cpu')
a['optimizer'] = []
torch.save(a, filename.replace('.pt', '_lite.pt'))
def coco_class_count(path='../coco/labels/train2014/'):
# Histogram of occurrences per class
nc = 80 # number classes
x = np.zeros(nc, dtype='int32')
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
print(i, len(files))
def coco_only_people(path='../coco/labels/val2014/'):
# Find images with only people
files = sorted(glob.glob('%s/*.*' % path))
for i, file in enumerate(files):
labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
if all(labels[:, 0] == 0):
print(labels.shape[0], file)
def select_best_evolve(path='../../Downloads/evolve*.txt'): # from utils.utils import *; select_best_evolve()
# Find best evolved mutation
for file in sorted(glob.glob(path)):
x = np.loadtxt(file, dtype=np.float32)
print(file, x[x[:, 2].argmax()])
def kmeans_targets(path='./data/coco_64img.txt'): # from utils.utils import *; kmeans_targets()
with open(path, 'r') as f:
img_files = f.read().splitlines()
img_files = list(filter(lambda x: len(x) > 0, img_files))
# Read shapes
n = len(img_files)
assert n > 0, 'No images found in %s' % path
label_files = [x.replace('images', 'labels').
replace('.jpeg', '.txt').
replace('.jpg', '.txt').
replace('.bmp', '.txt').
replace('.png', '.txt') for x in img_files]
s = np.array([Image.open(f).size for f in tqdm(img_files, desc='Reading image shapes')]) # (width, height)
# Read targets
labels = [np.zeros((0, 5))] * n
iter = tqdm(label_files, desc='Reading labels')
for i, file in enumerate(iter):
try:
with open(file, 'r') as f:
l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
l[:, [1, 3]] *= s[i][0]
l[:, [2, 4]] *= s[i][1]
l[:, 1:] *= 320 / max(s[i])
labels[i] = l
except:
pass # print('Warning: missing labels for %s' % self.img_files[i]) # missing label file
assert len(np.concatenate(labels, 0)) > 0, 'No labels found. Incorrect label paths provided.'
# kmeans
from scipy import cluster
wh = np.concatenate(labels, 0)[:, 3:5]
k = cluster.vq.kmeans(wh, 9)[0]
k = k[np.argsort(k.prod(1))]
for x in k.ravel():
print('%.1f, ' % x, end='')
# Plotting functions ---------------------------------------------------------------------------------------------------
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
# Compares the two methods for width-height anchor multiplication
# https://github.com/ultralytics/yolov3/issues/168
x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
fig = plt.figure(figsize=(6, 3), dpi=150)
plt.plot(x, ya, '.-', label='yolo method')
plt.plot(x, yb ** 2, '.-', label='^2 power method')
plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
plt.xlim(left=-4, right=4)
plt.ylim(bottom=0, top=6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi=300)
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
# Plots training images overlaid with targets
imgs = imgs.cpu().numpy()
targets = targets.cpu().numpy()
# targets = targets[targets[:, 1] == 21] # plot only one class
fig = plt.figure(figsize=(10, 10))
bs, _, h, w = imgs.shape # batch size, _, height, width
ns = np.ceil(bs ** 0.5) # number of subplots
for i in range(bs):
boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
boxes[[0, 2]] *= w
boxes[[1, 3]] *= h
plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
plt.axis('off')
if paths is not None:
s = Path(paths[i]).name
plt.title(s[:min(len(s), 40)], fontdict={'size': 8}) # limit to 40 characters
fig.tight_layout()
fig.savefig(fname, dpi=300)
plt.close()
def plot_test_txt(): # from utils.utils import *; plot_test()
# Plot test.txt histograms
x = np.loadtxt('test.txt', dtype=np.float32)
box = xyxy2xywh(x[:, :4])
cx, cy = box[:, 0], box[:, 1]
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
ax.set_aspect('equal')
fig.tight_layout()
plt.savefig('hist2d.jpg', dpi=300)
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].hist(cx, bins=600)
ax[1].hist(cy, bins=600)
fig.tight_layout()
plt.savefig('hist1d.jpg', dpi=300)
def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
# Plot test.txt histograms
x = np.loadtxt('targets.txt', dtype=np.float32)
x = x.T
s = ['x targets', 'y targets', 'width targets', 'height targets']
fig, ax = plt.subplots(2, 2, figsize=(8, 8))
ax = ax.ravel()
for i in range(4):
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
ax[i].legend()
ax[i].set_title(s[i])
fig.tight_layout()
plt.savefig('targets.jpg', dpi=300)
def plot_results(start=0, stop=0): # from utils.utils import *; plot_results()
# Plot training results files 'results*.txt'
# import os; os.system('wget https://storage.googleapis.com/ultralytics/yolov3/results_v3.txt')
fig, ax = plt.subplots(2, 5, figsize=(14, 7))
ax = ax.ravel()
s = ['X + Y', 'Width + Height', 'Confidence', 'Classification', 'Train Loss', 'Precision', 'Recall', 'mAP', 'F1',
'Test Loss']
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
results = np.loadtxt(f, usecols=[2, 3, 4, 5, 6, 9, 10, 11, 12, 13]).T
n = results.shape[1] # number of rows
x = range(start, min(stop, n) if stop else n)
for i in range(10):
ax[i].plot(x, results[i, x], marker='.', label=f.replace('.txt', ''))
ax[i].set_title(s[i])
fig.tight_layout()
ax[4].legend()
fig.savefig('results.png', dpi=300)
