一、Unsafe介绍
1、Unsafe简介
Unsafe类相当于是一个java语言中的后门类,提供了硬件级别的原子操作,所以在一些并发编程中被大量使用。jdk已经作出说明,该类对程序员而言不是一个安全操作,在后续的jdk升级过程中,可能会禁用该类。所以这个类的使用是一把双刃剑,实际项目中谨慎使用,以免造成jdk升级不兼容问题。
2、Unsafe Api
这里并不系统讲解Unsafe的所有功能,只介绍和接下来内容相关的操作
arrayBaseOffset:获取数组的基础偏移量
arrayIndexScale:获取数组中元素的偏移间隔,要获取对应所以的元素,将索引号和该值相乘,获得数组中指定角标元素的偏移量
getObjectVolatile:获取对象上的属性值或者数组中的元素
getObject:获取对象上的属性值或者数组中的元素,已过时
putOrderedObject:设置对象的属性值或者数组中某个角标的元素,不保证线程间即时可见性,更高效
putObjectVolatile:设置对象的属性值或者数组中某个角标的元素
putObject:设置对象的属性值或者数组中某个角标的元素,已过时
3、代码演示
public class Test02 {public static void main(String[] args) throws Exception {Integer[] arr = {2,5,1,8,10};//获取Unsafe对象Unsafe unsafe = getUnsafe();//获取Integer[]的基础偏移量int baseOffset = unsafe.arrayBaseOffset(Integer[].class);//获取Integer[]中元素的偏移间隔int indexScale = unsafe.arrayIndexScale(Integer[].class);//获取数组中索引为2的元素对象Object o = unsafe.getObjectVolatile(arr, (2 * indexScale) + baseOffset);System.out.println(o); //1//设置数组中索引为2的元素值为100unsafe.putOrderedObject(arr,(2 * indexScale) + baseOffset,100);System.out.println(Arrays.toString(arr));//[2, 5, 100, 8, 10]}//反射获取Unsafe对象public static Unsafe getUnsafe() throws Exception {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);return (Unsafe) theUnsafe.get(null);}}
3.1 图解说明
二、jdk1.7容器初始化
1、源码解析
// 空参构造public ConcurrentHashMap() {//调用本类的带参构造//DEFAULT_INITIAL_CAPACITY = 16//DEFAULT_LOAD_FACTOR = 0.75f//int DEFAULT_CONCURRENCY_LEVEL = 16this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);}
三个参数的构造:一些非核心逻辑的代码已经省略
//initialCapacity 定义ConcurrentHashMap存放元素的容量//concurrencyLevel 定义ConcurrentHashMap中Segment[]的大小public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {int sshift = 0;int ssize = 1;//计算Segment[]的大小,保证是2的幂次方数while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}//这两个值用于后面计算Segment[]的角标this.segmentShift = 32 - sshift; // 28this.segmentMask = ssize - 1; // 15//计算每个Segment中存储元素的个数int c = initialCapacity / ssize; // 16 / 16 = 1if (c * ssize < initialCapacity)++c;//最小Segment中存储元素的个数为2int cap = MIN_SEGMENT_TABLE_CAPACITY;////矫正每个Segment中存储元素的个数,保证是2的幂次方,最小为2while (cap < c)cap <<= 1;//创建一个Segment对象,作为其他Segment对象的模板Segment<K,V> s0 =new Segment<K,V>(loadFactor, (int)(cap * loadFactor),(HashEntry<K,V>[])new HashEntry[cap]);Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];//利用Unsafe类,将创建的Segment对象存入0角标位置UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]this.segments = ss;}
综上:ConcurrentHashMap中保存了一个默认长度为16的Segment[],每个Segment元素中保存了一个默认长度为2的HashEntry[],我们添加的元素,是存入对应的Segment中的HashEntry[]中。所以ConcurrentHashMap中默认元素的长度是32个,而不是16个
2、图解
3、Segment数组
static final class Segment<K,V> extends ReentrantLock implements Serializable {...}
我们发现Segment是继承自ReentrantLock的,学过线程的兄弟都知道,它可以实现同步操作,从而保证多线程下的安全。因为每个Segment之间的锁互不影响,所以我们也将ConcurrentHashMap中的这种锁机制称之为分段锁,这比HashTable的线程安全操作高效的多。
4、HashEntry数组
//ConcurrentHashMap中真正存储数据的对象static final class HashEntry<K,V> {final int hash; //通过运算,得到的键的hash值final K key; // 存入的键volatile V value; //存入的值volatile HashEntry<K,V> next; //记录下一个元素,形成单向链表HashEntry(int hash, K key, V value, HashEntry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}}
三、jdk1.7添加安全
1、源码分析
1.1 ConcurrentHashMap的put方法
public V put(K key, V value) {Segment<K,V> s;if (value == null)throw new NullPointerException();//基于key,计算hash值int hash = hash(key);//因为一个键要计算两个数组的索引,为了避免冲突,这里取高位计算Segment[]的索引int j = (hash >>> segmentShift) & segmentMask;//判断该索引位的Segment对象是否创建,没有就创建if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegments = ensureSegment(j);//调用Segmetn的put方法实现元素添加return s.put(key, hash, value, false);}
1.2 ConcurrentHashMap的ensureSegment方法
//创建对应索引位的Segment对象,并返回private Segment<K,V> ensureSegment(int k) {final Segment<K,V>[] ss = this.segments;long u = (k << SSHIFT) + SBASE; // raw offsetSegment<K,V> seg;//获取,如果为null,即创建if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {//以0角标位的Segment为模板Segment<K,V> proto = ss[0]; // use segment 0 as prototypeint cap = proto.table.length;float lf = proto.loadFactor;int threshold = (int)(cap * lf);HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];//获取,如果为null,即创建if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) { // recheck//创建Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);//自旋方式,将创建的Segment对象放到Segment[]中,确保线程安全while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))== null) {if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))break;}}}//返回return seg;}
1.3 Segment的put方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) {//尝试获取锁,获取成功,node为null,代码向下执行//如果有其他线程占据锁对象,那么去做别的事情,而不是一直等待,提升效率//scanAndLockForPut 稍后分析HashEntry<K,V> node = tryLock() ? null :scanAndLockForPut(key, hash, value);V oldValue;try {HashEntry<K,V>[] tab = table;//取hash的低位,计算HashEntry[]的索引int index = (tab.length - 1) & hash;//获取索引位的元素对象HashEntry<K,V> first = entryAt(tab, index);for (HashEntry<K,V> e = first;;) {//获取的元素对象不为空if (e != null) {K k;//如果是重复元素,覆盖原值if ((k = e.key) == key ||(e.hash == hash && key.equals(k))) {oldValue = e.value;if (!onlyIfAbsent) {e.value = value;++modCount;}break;}//如果不是重复元素,获取链表的下一个元素,继续循环遍历链表e = e.next;}else { //如果获取到的元素为空//当前添加的键值对的HashEntry对象已经创建if (node != null)node.setNext(first); //头插法关联即可else//创建当前添加的键值对的HashEntry对象node = new HashEntry<K,V>(hash, key, value, first);//添加的元素数量递增int c = count + 1;//判断是否需要扩容if (c > threshold && tab.length < MAXIMUM_CAPACITY)//需要扩容rehash(node);else//不需要扩容//将当前添加的元素对象,存入数组角标位,完成头插法添加元素setEntryAt(tab, index, node);++modCount;count = c;oldValue = null;break;}}} finally {//释放锁unlock();}return oldValue;}
1.4 Segment的scanAndLockForPut方法
该方法在线程没有获取到锁的情况下,去完成HashEntry对象的创建,提升效率
但是这个操作个人感觉有点累赘了。
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {//获取头部元素HashEntry<K,V> first = entryForHash(this, hash);HashEntry<K,V> e = first;HashEntry<K,V> node = null;int retries = -1; // negative while locating nodewhile (!tryLock()) {//获取锁失败HashEntry<K,V> f; // to recheck first belowif (retries < 0) {//没有下一个节点,并且也不是重复元素,创建HashEntry对象,不再遍历if (e == null) {if (node == null) // speculatively create nodenode = new HashEntry<K,V>(hash, key, value, null);retries = 0;}else if (key.equals(e.key))//重复元素,不创建HashEntry对象,不再遍历retries = 0;else//继续遍历下一个节点e = e.next;}else if (++retries > MAX_SCAN_RETRIES) {//如果尝试获取锁的次数过多,直接阻塞//MAX_SCAN_RETRIES会根据可用cpu核数来确定lock();break;}else if ((retries & 1) == 0 &&(f = entryForHash(this, hash)) != first) {//如果期间有别的线程获取锁,重新遍历e = first = f; // re-traverse if entry changedretries = -1;}}return node;}
2、模拟多线程的代码流程
这里“通话”和“重地”的哈希值是一样的,那么他们添加时,会存入同一个Segment对象,必然会存在锁竞争
public static void main(String[] args) throws Exception {final ConcurrentHashMap chm = new ConcurrentHashMap();new Thread(){@Overridepublic void run() {chm.put("通话","11");System.out.println("-----------");}}.start();//让第一个线程先启动,进入put方法Thread.sleep(1000);new Thread(){@Overridepublic void run() {chm.put("重地","22");System.out.println("===========");}}.start();}
2.1 多线程环境下的条件断点设置
2.2 运行结果
会发现两个线程,分别停在不同的断点位置,这就是多线程锁互斥产生的结果
然后就可以分别让不同的线程向下执行,查看代码走向了。
四、jdk1.7扩容安全
1、源码分析
private void rehash(HashEntry<K,V> node) {HashEntry<K,V>[] oldTable = table;int oldCapacity = oldTable.length;//两倍容量int newCapacity = oldCapacity << 1;threshold = (int)(newCapacity * loadFactor);//基于新容量,创建HashEntry数组HashEntry<K,V>[] newTable =(HashEntry<K,V>[]) new HashEntry[newCapacity];int sizeMask = newCapacity - 1;//实现数据迁移for (int i = 0; i < oldCapacity ; i++) {HashEntry<K,V> e = oldTable[i];if (e != null) {HashEntry<K,V> next = e.next;int idx = e.hash & sizeMask;if (next == null) // Single node on list//原位置只有一个元素,直接放到新数组即可newTable[idx] = e;else { // Reuse consecutive sequence at same slot//=========图一=====================HashEntry<K,V> lastRun = e;int lastIdx = idx;for (HashEntry<K,V> last = next;last != null;last = last.next) {int k = last.hash & sizeMask;if (k != lastIdx) {lastIdx = k;lastRun = last;}}//=========图一=====================//=========图二=====================newTable[lastIdx] = lastRun;//=========图二=====================// Clone remaining nodes//=========图三=====================for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {V v = p.value;int h = p.hash;int k = h & sizeMask;HashEntry<K,V> n = newTable[k];//这里旧的HashEntry不会放到新数组//而是基于原来的数据创建了一个新的HashEntry对象,放入新数组newTable[k] = new HashEntry<K,V>(h, p.key, v, n);}//=========图三=====================}}}//采用头插法,将新元素加入到数组中int nodeIndex = node.hash & sizeMask; // add the new nodenode.setNext(newTable[nodeIndex]);newTable[nodeIndex] = node;table = newTable;}
2、图解
五、jdk1.7集合长度获取
1、源码分析
public int size() {// Try a few times to get accurate count. On failure due to// continuous async changes in table, resort to locking.final Segment<K,V>[] segments = this.segments;int size;boolean overflow; // true if size overflows 32 bitslong sum; // sum of modCountslong last = 0L; // previous sumint retries = -1; // first iteration isn't retrytry {for (;;) {//当第5次走到这个地方时,会将整个Segment[]的所有Segment对象锁住if (retries++ == RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j)ensureSegment(j).lock(); // force creation}sum = 0L;size = 0;overflow = false;for (int j = 0; j < segments.length; ++j) {Segment<K,V> seg = segmentAt(segments, j);if (seg != null) {//累加所有Segment的操作次数sum += seg.modCount;int c = seg.count;//累加所有segment中的元素个数 size+=cif (c < 0 || (size += c) < 0)overflow = true;}}//当这次累加值和上一次累加值一样,证明没有进行新的增删改操作,返回sum//第一次last为0,如果有元素的话,这个for循环最少循环两次的if (sum == last)break;//记录累加的值last = sum;}} finally {//如果之前有锁住,解锁if (retries > RETRIES_BEFORE_LOCK) {for (int j = 0; j < segments.length; ++j)segmentAt(segments, j).unlock();}}//溢出,返回int的最大值,否则返回累加的sizereturn overflow ? Integer.MAX_VALUE : size;}
说明:市面上很多讲ConcurrentHashMap的源码分析课程,大多都是以营销为目的,并没有完整讲解添加安全和扩容安全,就目前我所知,所有公开课程中,没有任何课程讲解jdk1.8多线程扩容效率的改进方案
六、jdk1.8容器初始化
1、源码分析
在jdk8的ConcurrentHashMap中一共有5个构造方法,这四个构造方法中都没有对内部的数组做初始化, 只是对一些变量的初始值做了处理
jdk8的ConcurrentHashMap的数组初始化是在第一次添加元素时完成
//没有维护任何变量的操作,如果调用该方法,数组长度默认是16public ConcurrentHashMap() {}//传递进来一个初始容量,ConcurrentHashMap会基于这个值计算一个比这个值大的2的幂次方数作为初始容量public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0)throw new IllegalArgumentException();int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));this.sizeCtl = cap;}
注意:调用这个方法,得到的初始容量和我们之前讲的HashMap以及jdk7的ConcurrentHashMap不同,即使你传递的是一个2的幂次方数,该方法计算出来的初始容量依然是比这个值大的2的幂次方数
//调用四个参数的构造public ConcurrentHashMap(int initialCapacity, float loadFactor) {this(initialCapacity, loadFactor, 1);}//计算一个大于或者等于给定的容量值,该值是2的幂次方数作为初始容量public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel) // Use at least as many binsinitialCapacity = concurrencyLevel; // as estimated threadslong size = (long)(1.0 + (long)initialCapacity / loadFactor);int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap;}//基于一个Map集合,构建一个ConcurrentHashMap//初始容量为16public ConcurrentHashMap(Map<? extends K, ? extends V> m) {this.sizeCtl = DEFAULT_CAPACITY;putAll(m);}
2、sizeCtl含义解释
注意:以上这些构造方法中,都涉及到一个变量sizeCtl,这个变量是一个非常重要的变量,而且具有非常丰富的含义,它的值不同,对应的含义也不一样,这里我们先对这个变量不同的值的含义做一下说明,后续源码分析过程中,进一步解释
sizeCtl为0,代表数组未初始化, 且数组的初始容量为16
sizeCtl为正数,如果数组未初始化,那么其记录的是数组的初始容量,如果数组已经初始化,那么其记录的是数组的扩容阈值
sizeCtl为-1,表示数组正在进行初始化
sizeCtl小于0,并且不是-1,表示数组正在扩容, -(1+n),表示此时有n个线程正在共同完成数组的扩容操作
七、jdk1.8添加安全
1、源码分析
1.1 添加元素put/putVal方法
public V put(K key, V value) {return putVal(key, value, false);}final V putVal(K key, V value, boolean onlyIfAbsent) {//如果有空值或者空键,直接抛异常if (key == null || value == null) throw new NullPointerException();//基于key计算hash值,并进行一定的扰动int hash = spread(key.hashCode());//记录某个桶上元素的个数,如果超过8个,会转成红黑树int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;//如果数组还未初始化,先对数组进行初始化if (tab == null || (n = tab.length) == 0)tab = initTable();//如果hash计算得到的桶位置没有元素,利用cas将元素添加else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//cas+自旋(和外侧的for构成自旋循环),保证元素添加安全if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break; // no lock when adding to empty bin}//如果hash计算得到的桶位置元素的hash值为MOVED,证明正在扩容,那么协助扩容else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else {//hash计算的桶位置元素不为空,且当前没有处于扩容操作,进行元素添加V oldVal = null;//对当前桶进行加锁,保证线程安全,执行元素添加操作synchronized (f) {if (tabAt(tab, i) == f) {//普通链表节点if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}//树节点,将元素添加到红黑树中else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) {//链表长度大于/等于8,将链表转成红黑树if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);//如果是重复键,直接将旧值返回if (oldVal != null)return oldVal;break;}}}//添加的是新元素,维护集合长度,并判断是否要进行扩容操作addCount(1L, binCount);return null;}
通过以上源码,我们可以看到,当需要添加元素时,会针对当前元素所对应的桶位进行加锁操作,这样一方面保证元素添加时,多线程的安全,同时对某个桶位加锁不会影响其他桶位的操作,进一步提升多线程的并发效率
1.2 数组初始化,initTable方法
private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;//cas+自旋,保证线程安全,对数组进行初始化操作while ((tab = table) == null || tab.length == 0) {//如果sizeCtl的值(-1)小于0,说明此时正在初始化, 让出cpuif ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spin//cas修改sizeCtl的值为-1,修改成功,进行数组初始化,失败,继续自旋else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {//sizeCtl为0,取默认长度16,否则去sizeCtl的值int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")//基于初始长度,构建数组对象Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;//计算扩容阈值,并赋值给scsc = n - (n >>> 2);}} finally {//将扩容阈值,赋值给sizeCtlsizeCtl = sc;}break;}}return tab;}
2、图解
2.1 put加锁图解
八、jdk1.8扩容安全
1、源码分析
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {int n = tab.length, stride;//如果是多cpu,那么每个线程划分任务,最小任务量是16个桶位的迁移if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)stride = MIN_TRANSFER_STRIDE; // subdivide range//如果是扩容线程,此时新数组为nullif (nextTab == null) { // initiatingtry {@SuppressWarnings("unchecked")//两倍扩容创建新数组Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];nextTab = nt;} catch (Throwable ex) { // try to cope with OOMEsizeCtl = Integer.MAX_VALUE;return;}nextTable = nextTab;//记录线程开始迁移的桶位,从后往前迁移transferIndex = n;}//记录新数组的末尾int nextn = nextTab.length;//已经迁移的桶位,会用这个节点占位(这个节点的hash值为-1--MOVED)ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);boolean advance = true;boolean finishing = false; // to ensure sweep before committing nextTabfor (int i = 0, bound = 0;;) {Node<K,V> f; int fh;while (advance) {int nextIndex, nextBound;//i记录当前正在迁移桶位的索引值//bound记录下一次任务迁移的开始桶位//--i >= bound 成立表示当前线程分配的迁移任务还没有完成if (--i >= bound || finishing)advance = false;//没有元素需要迁移 -- 后续会去将扩容线程数减1,并判断扩容是否完成else if ((nextIndex = transferIndex) <= 0) {i = -1;advance = false;}//计算下一次任务迁移的开始桶位,并将这个值赋值给transferIndexelse if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,nextBound = (nextIndex > stride ?nextIndex - stride : 0))) {bound = nextBound;i = nextIndex - 1;advance = false;}}//如果没有更多的需要迁移的桶位,就进入该ifif (i < 0 || i >= n || i + n >= nextn) {int sc;//扩容结束后,保存新数组,并重新计算扩容阈值,赋值给sizeCtlif (finishing) {nextTable = null;table = nextTab;sizeCtl = (n << 1) - (n >>> 1);return;}//扩容任务线程数减1if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {//判断当前所有扩容任务线程是否都执行完成if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)return;//所有扩容线程都执行完,标识结束finishing = advance = true;i = n; // recheck before commit}}//当前迁移的桶位没有元素,直接在该位置添加一个fwd节点else if ((f = tabAt(tab, i)) == null)advance = casTabAt(tab, i, null, fwd);//当前节点已经被迁移else if ((fh = f.hash) == MOVED)advance = true; // already processedelse {//当前节点需要迁移,加锁迁移,保证多线程安全//此处迁移逻辑和jdk7的ConcurrentHashMap相同,不再赘述synchronized (f) {if (tabAt(tab, i) == f) {Node<K,V> ln, hn;if (fh >= 0) {int runBit = fh & n;Node<K,V> lastRun = f;for (Node<K,V> p = f.next; p != null; p = p.next) {int b = p.hash & n;if (b != runBit) {runBit = b;lastRun = p;}}if (runBit == 0) {ln = lastRun;hn = null;}else {hn = lastRun;ln = null;}for (Node<K,V> p = f; p != lastRun; p = p.next) {int ph = p.hash; K pk = p.key; V pv = p.val;if ((ph & n) == 0)ln = new Node<K,V>(ph, pk, pv, ln);elsehn = new Node<K,V>(ph, pk, pv, hn);}setTabAt(nextTab, i, ln);setTabAt(nextTab, i + n, hn);setTabAt(tab, i, fwd);advance = true;}else if (f instanceof TreeBin) {TreeBin<K,V> t = (TreeBin<K,V>)f;TreeNode<K,V> lo = null, loTail = null;TreeNode<K,V> hi = null, hiTail = null;int lc = 0, hc = 0;for (Node<K,V> e = t.first; e != null; e = e.next) {int h = e.hash;TreeNode<K,V> p = new TreeNode<K,V>(h, e.key, e.val, null, null);if ((h & n) == 0) {if ((p.prev = loTail) == null)lo = p;elseloTail.next = p;loTail = p;++lc;}else {if ((p.prev = hiTail) == null)hi = p;elsehiTail.next = p;hiTail = p;++hc;}}ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :(hc != 0) ? new TreeBin<K,V>(lo) : t;hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :(lc != 0) ? new TreeBin<K,V>(hi) : t;setTabAt(nextTab, i, ln);setTabAt(nextTab, i + n, hn);setTabAt(tab, i, fwd);advance = true;}}}}}}
2、图解
九、jdk1.8多线程扩容效率改进
多线程协助扩容的操作会在两个地方被触发:
① 当添加元素时,发现添加的元素对用的桶位为fwd节点,就会先去协助扩容,然后再添加元素
② 当添加完元素后,判断当前元素个数达到了扩容阈值,此时发现sizeCtl的值小于0,并且新数组不为空,这个时候,会去协助扩容
1、源码分析
1.1 元素未添加,先协助扩容,扩容完后再添加元素
final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh;if (tab == null || (n = tab.length) == 0)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break; // no lock when adding to empty bin}//发现此处为fwd节点,协助扩容,扩容结束后,再循环回来添加元素else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);//省略代码final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {Node<K,V>[] nextTab; int sc;if (tab != null && (f instanceof ForwardingNode) &&(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {int rs = resizeStamp(tab.length);while (nextTab == nextTable && table == tab &&(sc = sizeCtl) < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || transferIndex <= 0)break;if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {//扩容,传递一个不是null的nextTabtransfer(tab, nextTab);break;}}return nextTab;}return table;}
1.2 先添加元素,再协助扩容
private final void addCount(long x, int check) {//省略代码if (check >= 0) {Node<K,V>[] tab, nt; int n, sc;//元素个数达到扩容阈值while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {int rs = resizeStamp(n);//sizeCtl小于0,说明正在执行扩容,那么协助扩容if (sc < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);s = sumCount();}}}
2、图解
十、集合长度的累计方式
1、源码分析
1.1 addCount方法
① CounterCell数组不为空,优先利用数组中的CounterCell记录数量
② 如果数组为空,尝试对baseCount进行累加,失败后,会执行fullAddCount逻辑
③ 如果是添加元素操作,会继续判断是否需要扩容
private final void addCount(long x, int check) {CounterCell[] as; long b, s;//当CounterCell数组不为空,则优先利用数组中的CounterCell记录数量//或者当baseCount的累加操作失败,会利用数组中的CounterCell记录数量if ((as = counterCells) != null ||!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {CounterCell a; long v; int m;//标识是否有多线程竞争boolean uncontended = true;//当as数组为空//或者当as长度为0//或者当前线程对应的as数组桶位的元素为空//或者当前线程对应的as数组桶位不为空,但是累加失败if (as == null || (m = as.length - 1) < 0 ||(a = as[ThreadLocalRandom.getProbe() & m]) == null ||!(uncontended =U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {//以上任何一种情况成立,都会进入该方法,传入的uncontended是falsefullAddCount(x, uncontended);return;}if (check <= 1)return;//计算元素个数s = sumCount();}if (check >= 0) {Node<K,V>[] tab, nt; int n, sc;//当元素个数达到扩容阈值//并且数组不为空//并且数组长度小于限定的最大值//满足以上所有条件,执行扩容while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {//这个是一个很大的正数int rs = resizeStamp(n);//sc小于0,说明有线程正在扩容,那么会协助扩容if (sc < 0) {//扩容结束或者扩容线程数达到最大值或者扩容后的数组为null或者没有更多的桶位需要转移,结束操作if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;//扩容线程加1,成功后,进行协助扩容操作if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))//协助扩容,newTable不为nulltransfer(tab, nt);}//没有其他线程在进行扩容,达到扩容阈值后,给sizeCtl赋了一个很大的负数//1+1=2 --》 代表此时有一个线程在扩容//rs << RESIZE_STAMP_SHIFT)是一个很大的负数else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))//扩容,newTable为nulltransfer(tab, null);s = sumCount();}}}
1.2 fullAddCount方法
① 当CounterCell数组不为空,优先对CounterCell数组中的CounterCell的value累加
② 当CounterCell数组为空,会去创建CounterCell数组,默认长度为2,并对数组中的CounterCell的value累加
③ 当数组为空,并且此时有别的线程正在创建数组,那么尝试对baseCount做累加,成功即返回,否则自旋
private final void fullAddCount(long x, boolean wasUncontended) {int h;//获取当前线程的hash值if ((h = ThreadLocalRandom.getProbe()) == 0) {ThreadLocalRandom.localInit(); // force initializationh = ThreadLocalRandom.getProbe();wasUncontended = true;}//标识是否有冲突,如果最后一个桶不是null,那么为trueboolean collide = false; // True if last slot nonemptyfor (;;) {CounterCell[] as; CounterCell a; int n; long v;//数组不为空,优先对数组中CouterCell的value累加if ((as = counterCells) != null && (n = as.length) > 0) {//线程对应的桶位为nullif ((a = as[(n - 1) & h]) == null) {if (cellsBusy == 0) { // Try to attach new Cell//创建CounterCell对象CounterCell r = new CounterCell(x); // Optimistic create//利用CAS修改cellBusy状态为1,成功则将刚才创建的CounterCell对象放入数组中if (cellsBusy == 0 &&U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {boolean created = false;try { // Recheck under lockCounterCell[] rs; int m, j;//桶位为空, 将CounterCell对象放入数组if ((rs = counterCells) != null &&(m = rs.length) > 0 &&rs[j = (m - 1) & h] == null) {rs[j] = r;//表示放入成功created = true;}} finally {cellsBusy = 0;}if (created) //成功退出循环break;//桶位已经被别的线程放置了已给CounterCell对象,继续循环continue; // Slot is now non-empty}}collide = false;}//桶位不为空,重新计算线程hash值,然后继续循环else if (!wasUncontended) // CAS already known to failwasUncontended = true; // Continue after rehash//重新计算了hash值后,对应的桶位依然不为空,对value累加//成功则结束循环//失败则继续下面判断else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))break;//数组被别的线程改变了,或者数组长度超过了可用cpu大小,重新计算线程hash值,否则继续下一个判断else if (counterCells != as || n >= NCPU)collide = false; // At max size or stale//当没有冲突,修改为有冲突,并重新计算线程hash,继续循环else if (!collide)collide = true;//如果CounterCell的数组长度没有超过cpu核数,对数组进行两倍扩容//并继续循环else if (cellsBusy == 0 &&U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {try {if (counterCells == as) {// Expand table unless staleCounterCell[] rs = new CounterCell[n << 1];for (int i = 0; i < n; ++i)rs[i] = as[i];counterCells = rs;}} finally {cellsBusy = 0;}collide = false;continue; // Retry with expanded table}h = ThreadLocalRandom.advanceProbe(h);}//CounterCell数组为空,并且没有线程在创建数组,修改标记,并创建数组else if (cellsBusy == 0 && counterCells == as &&U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {boolean init = false;try { // Initialize tableif (counterCells == as) {CounterCell[] rs = new CounterCell[2];rs[h & 1] = new CounterCell(x);counterCells = rs;init = true;}} finally {cellsBusy = 0;}if (init)break;}//数组为空,并且有别的线程在创建数组,那么尝试对baseCount做累加,成功就退出循环,失败就继续循环else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))break; // Fall back on using base}}
2、图解
十一、jdk1.8集合长度获取
1、源码分析
1.1 size方法
public int size() {long n = sumCount();return ((n < 0L) ? 0 :(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :(int)n);}
1.2 sumCount方法
final long sumCount() {CounterCell[] as = counterCells; CounterCell a;//获取baseCount的值long sum = baseCount;if (as != null) {//遍历CounterCell数组,累加每一个CounterCell的value值for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;}
注意:这个方法并不是线程安全的


