HiKariCP 号称是业界跑得最快的数据库连接池,这两年发展得顺风顺水,尤其是 Springboot 2.0 将其作为了默认的数据库连接池后,江湖一哥的地位已是毋庸置疑了。那它为什么那么快呢?

HiKariCP 官方网站解释了其性能之所以如此之高的秘密。微观上 HiKariCP 程序编译出的字节码执行效率更高,站在字节码的角度去优化 Java 代码,HiKariCP 的作者对性能的执着可见一斑,不过遗憾的是他并没有详细解释都做了哪些优化。而宏观上主要是和两个数据结构有关,一个是 FastList,另一个是 ConcurrentBag。下面我们来看看它们是如何提升 HiKariCP 的性能的。

FastList

按照规范步骤,执行完数据库操作之后,需要依次关闭 ResultSet、Statement、Connection,但是总有粗心的同学只是关闭了 Connection,而忘了关闭 ResultSet 和 Statement。为了解决这种问题,最好的办法是当关闭 Connection 时,能够自动关闭 Statement。为了达到这个目标,Connection 就需要跟踪创建的 Statement,最简单的办法就是将创建的 Statement 保存在数组 ArrayList 里,这样当关闭 Connection 的时候,就可以依次将数组中的所有 Statement 关闭。

HiKariCP 觉得用 ArrayList 还是太慢,当通过 conn.createStatement() 创建一个 Statement 时,需要调用 ArrayList 的 add() 方法加入到 ArrayList 中,这个是没有问题的;但是当通过 stmt.close() 关闭 Statement 的时候,需要调用 ArrayList 的 remove() 方法来将其从 ArrayList 中删除,这里是有优化余地的。

假设一个 Connection 依次创建 6 个 Statement,分别是 S1、S2、S3、S4、S5、S6,按照正常的编码习惯,关闭 Statement 的顺序一般是逆序的,关闭的顺序是:S6、S5、S4、S3、S2、S1,而 ArrayList 的 remove(Object o) 方法是顺序遍历查找,逆序删除而顺序查找,这样的查找效率就太慢了。如何优化呢?很简单,优化成逆序查找就可以了。
image.png
HiKariCP 中的 FastList 相对于 ArrayList 的一个优化点就是将 remove(Object element) 方法的查找顺序变成了逆序查找。除此之外,FastList 还有另一个优化点,是 get(int index) 方法没有对 index 参数进行越界检查,HiKariCP 能保证不会越界,所以不用每次都进行越界检查。整体来看,FastList 的优化点还是很简单的。下面我们再来聊聊 HiKariCP 中的另外一个数据结构 ConcurrentBag,看看它又是如何提升性能的。

ConcurrentBag

如果让我们自己来实现一个数据库连接池,最简单的办法就是用两个阻塞队列来实现,一个用于保存空闲数据库连接的队列 idle,另一个用于保存忙碌数据库连接的队列 busy;获取连接时将空闲的数据库连接从 idle 队列移动到 busy 队列,而关闭连接时将数据库连接从 busy 移动到 idle。这种方案将并发问题委托给了阻塞队列,实现简单,但性能不好。因为 Java 阻塞队列是用锁实现的,而高并发场景下锁的争用对性能影响很大。

  1. // 忙碌队列
  2. BlockingQueue<Connection> busy;
  3. // 空闲队列
  4. BlockingQueue<Connection> idle;

HiKariCP 并没有使用 Java SDK 中的阻塞队列,而是自己实现了一个叫做 ConcurrentBag 的并发容器。ConcurrentBag 的设计最初源自 C#,它的一个核心设计是使用 ThreadLocal 避免部分并发问题,不过 HiKariCP 中的 ConcurrentBag 并没有完全参考 C# 的实现,下面我们来看看它是如何实现的。

ConcurrentBag 中最关键的属性有 4 个,分别是:用于存储所有的数据库连接的共享队列 sharedList、线程本地存储 threadList、等待数据库连接的线程数 waiters 以及分配数据库连接的工具 handoffQueue。其中,handoffQueue 用的是 Java 提供的 SynchronousQueue,主要用于线程之间传递数据。

  1. // 用于存储所有的数据库连接
  2. CopyOnWriteArrayList<T> sharedList;
  3. // 线程本地存储中的数据库连接
  4. ThreadLocal<List<Object>> threadList;
  5. // 等待数据库连接的线程数
  6. AtomicInteger waiters;
  7. // 分配数据库连接的工具
  8. SynchronousQueue<T> handoffQueue;

1. add

当线程池创建了一个数据库连接时,通过调用 ConcurrentBag 的 add() 方法加入到 ConcurrentBag 中,下面是 add() 方法的具体实现,逻辑很简单,就是将这个连接加入到共享队列 sharedList 中,如果此时有线程在等待数据库连接,那么就通过 handoffQueue 将这个连接分配给等待的线程。

  1. // 将空闲连接添加到队列
  2. void add(final T bagEntry){
  3. // 加入共享队列
  4. sharedList.add(bagEntry);
  5. // 如果有等待连接的线程,
  6. // 则通过handoffQueue直接分配给等待的线程
  7. while (waiters.get() > 0
  8. && bagEntry.getState() == STATE_NOT_IN_USE
  9. && !handoffQueue.offer(bagEntry)) {
  10. yield();
  11. }
  12. }

2. borrow

通过 ConcurrentBag 提供的 borrow() 方法,可以获取一个空闲的数据库连接,borrow() 的主要逻辑是:

  • 首先查看线程本地存储是否有空闲连接,如果有,则返回一个空闲的连接;
  • 如果线程本地存储中无空闲连接,则从共享队列中获取。
  • 如果共享队列中也没有空闲的连接,则请求线程需要等待。

需要注意的是,线程本地存储中的连接是可以被其他线程窃取的,所以需要用 CAS 方法防止重复分配。在共享队列中获取空闲连接,也采用了 CAS 方法防止重复分配。

  1. T borrow(long timeout, final TimeUnit timeUnit){
  2. // 先查看线程本地存储是否有空闲连接
  3. final List<Object> list = threadList.get();
  4. for (int i = list.size() - 1; i >= 0; i--) {
  5. final Object entry = list.remove(i);
  6. final T bagEntry = weakThreadLocals
  7. ? ((WeakReference<T>) entry).get()
  8. : (T) entry;
  9. // 线程本地存储中的连接也可以被窃取,
  10. // 所以需要用CAS方法防止重复分配
  11. if (bagEntry != null
  12. && bagEntry.compareAndSet(STATE_NOT_IN_USE, STATE_IN_USE)) {
  13. return bagEntry;
  14. }
  15. }
  16. // 线程本地存储中无空闲连接,则从共享队列中获取
  17. final int waiting = waiters.incrementAndGet();
  18. try {
  19. for (T bagEntry : sharedList) {
  20. // 如果共享队列中有空闲连接,则返回
  21. if (bagEntry.compareAndSet(STATE_NOT_IN_USE, STATE_IN_USE)) {
  22. return bagEntry;
  23. }
  24. }
  25. // 共享队列中没有连接,则需要等待
  26. timeout = timeUnit.toNanos(timeout);
  27. do {
  28. final long start = currentTime();
  29. final T bagEntry = handoffQueue.poll(timeout, NANOSECONDS);
  30. if (bagEntry == null
  31. || bagEntry.compareAndSet(STATE_NOT_IN_USE, STATE_IN_USE)) {
  32. return bagEntry;
  33. }
  34. // 重新计算等待时间
  35. timeout -= elapsedNanos(start);
  36. } while (timeout > 10_000);
  37. // 超时没有获取到连接,返回null
  38. return null;
  39. } finally {
  40. waiters.decrementAndGet();
  41. }
  42. }

3. requite

释放连接需要调用 ConcurrentBag 提供的 requite() 方法,该方法的逻辑很简单,首先将数据库连接状态更改为 STATE_NOT_IN_USE,之后查看是否存在等待线程,如果有,则分配给等待线程;如果没有,则将该数据库连接保存到线程本地存储里。

  1. // 释放连接
  2. void requite(final T bagEntry){
  3. // 更新连接状态
  4. bagEntry.setState(STATE_NOT_IN_USE);
  5. // 如果有等待的线程,则直接分配给线程,无需进入任何队列
  6. for (int i = 0; waiters.get() > 0; i++) {
  7. if (bagEntry.getState() != STATE_NOT_IN_USE
  8. || handoffQueue.offer(bagEntry)) {
  9. return;
  10. } else if ((i & 0xff) == 0xff) {
  11. parkNanos(MICROSECONDS.toNanos(10));
  12. } else {
  13. yield();
  14. }
  15. }
  16. // 如果没有等待的线程,则进入线程本地存储
  17. final List<Object> threadLocalList = threadList.get();
  18. if (threadLocalList.size() < 50) {
  19. threadLocalList.add(weakThreadLocals
  20. ? new WeakReference<>(bagEntry)
  21. : bagEntry);
  22. }
  23. }

HiKariCP 中的 FastList 和 ConcurrentBag 这两个数据结构使用得非常巧妙,虽然实现起来并不复杂,但是对于性能的提升非常明显,根本原因在于这两个数据结构适用于数据库连接池这个特定的场景。FastList 适用于逆序删除场景;而 ConcurrentBag 通过 ThreadLocal 做一次预分配,避免直接竞争共享资源,非常适合池化资源的分配。