#!/usr/bin/env python
from __future__ import print_function
from itertools import count
import torch
import torch.nn.functional as F
POLY_DEGREE = 4
W_target = torch.randn(POLY_DEGREE, 1) * 5
b_target = torch.randn(1) * 5
def make_features(x):
"""Builds features i.e. a matrix with columns [x, x^2, x^3, x^4]."""
x = x.unsqueeze(1)
return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1)
def f(x):
"""Approximated function."""
return x.mm(W_target) + b_target.item()
def poly_desc(W, b):
"""Creates a string description of a polynomial."""
result = 'y = '
for i, w in enumerate(W):
result += '{:+.2f} x^{} '.format(w, i + 1)
result += '{:+.2f}'.format(b[0])
return result
def get_batch(batch_size=32):
"""Builds a batch i.e. (x, f(x)) pair."""
random = torch.randn(batch_size)
x = make_features(random)
y = f(x)
return x, y
# Define model
fc = torch.nn.Linear(W_target.size(0), 1)
for batch_idx in count(1):
# Get data
batch_x, batch_y = get_batch()
# Reset gradients
fc.zero_grad()
# Forward pass
output = F.smooth_l1_loss(fc(batch_x), batch_y)
loss = output.item()
# Backward pass
output.backward()
# Apply gradients
for param in fc.parameters():
param.data.add_(-0.1 * param.grad)
# Stop criterion
if loss < 1e-3:
break
print('Loss: {:.6f} after {} batches'.format(loss, batch_idx))
print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))