数据结构
数据结构在学什么?
●如何用程序代码把现实世界的问题信息化。
●如何用计算机高效地处理这些信息从而创造价值。
第一章 绪论
1.1 数据结构的基本概念
1.1.1 基本概念和术语
数据:信息的载体,是所有能输入到计算机中并被计算机程序识别和处理的符号的集合。
数据元素:数据的基本单位,通常作为一个整体进行考虑和处理。 一个数据元素可由若干数据项组成,数据项是构成数据元素的不可分割的最小单位。
数据对象:具有相同性质的数据元素的集合,是数据的一个子集。
数据结构:相互之间存在一种或多种特定关系的数据元素的集合。这种数据元素相互之间的关系称为结构。数据结构包括三方面的内容:逻辑结构、存储结构和数据的运算。数据的逻辑结构和存储结构是密不可分的两个方面,一个算法的设计取决于所选定的逻辑结构,而算法的实现依赖于所采用的存储结构。
注:
●同样的数据元素,可组成不同的数据结构。
●不同的数据元素,可组成相同的数据结构。
数据类型:一个值的集合和定义在此集合上的一组操作的总称。
1原子类型。其值不可再分的数据类型。
2结构类型。其值可以再分解为若干成分(分量)的数据类型。
3抽象数据类型(ADT)。抽象数据组织及与之相关的操作。定义一个ADT,就是在“定义”一种数据结构。数据结构的使用者只需要知道数据结构的抽象数据类型,数据结构的实现者需要知道数据在计算机内部如何表示以及运算在计算机内部如何实现。
1.1.2 数据结构的三要素
数据结构着重关注的是数据元素之间的关系,和对这些数据元素的操作,而不关心具体的数据项内容。
1. 数据的逻辑结构
集合:结构中的数据元素之间除“同属一个集合” 外,别无其他关系。
线性结构:结构中的数据元素之间只存在一对一的关系。
树形结构:结构中的数据元素之间存在一对多的关系。
图状结构(网状结构):结构中的数据元素之间存在多对多的关系。
2. 数据的存储结构
顺序存储:
顺序存储:逻辑上相邻的元素存储在物理位置上也相邻的存储单元中,元素之间的关系由存储单元的邻接关系来体现。
●优点:可以实现随机存取,每个元素占用最少的存储空间。
●缺点:只能使用相邻的一整块存储单元,可能产生较多的外部碎片。
非顺序存储:
链式存储:逻辑上相邻的元素在物理位置上可以不相邻,借助指示元素存储地址的指针来表示元素之间的逻辑关系。
●优点:不会出现碎片现象,能充分利用所有存储单元。
●缺点:每个元素因存储指针而占用额外的存储空间,且只能实现顺序存取。
索引存储:在存储元素信息的同时,还建立附加的索引表。索引表中的每项称为索引项,索引项的一般形式是(关键字,地址)。
●优点:检索速度快。
●缺点:附加的索引表额外占用存储空间。增加和删除数据时也要修改索引表,会花费较多的时间。
散列存储:根据元素的关键字直接计算出该元素的存储地址,又称哈希(Hash) 存储。
●优点:检索、增加和删除结点的操作都很快。
●缺点:若散列函数不好,则可能出现元素存储单元的冲突,而解决冲突会增加时间和空间开销。
3. 数据的运算
施加在数据上的运算包括运算的定义和实现。运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价
1.2.1 算法的基本概念
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。
算法的五个特性(必须具备的特性):
1有穷性。算法必须总在执行有穷步之后结束,且每一步都可在有穷时间内完成。算法有穷,但程序可以无穷。
2确定性。算法中每条指令必须有确切的含义,相同的输入只能得出相同的输出。
3可行性。算法中描述的操作都可以通过已经实现的基本运算执行有限次来实现。
4输入。有零个或多个输入,这些输入取自于某个特定的对象的集合。
5输出。有一个或多个输出,这些输出是与输入有着某种特定关系的量。
“好”算法的特质(设计算法要尽量追求的目标):
1正确性。能够正确地解决求解问题。
2可读性。算法应具有良好的可读性。
3健壮性。输入非法数据时,算法能适当地做出反应或进行处理,而不会产生莫名其妙的输出结果。
4高效率与低存储量需求。高效率指算法执行的时间短(时间复杂度低),低存储量指算法执行过程中所需要的最大存储空间小(空间复杂度低)。
1.2.2 算法效率的度量
算法效率的度量是通过时间复杂度和空间复杂度来描述的。
1. 时间复杂度
一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环内的语句的频度与T(m)同数量级,因此通常采用算法中基本运算的频度f(n)来分析算法的时间复杂度。因此,算法的时间复杂度记为
T(n)= O(f(n))
式中,O的含义是T(n)的数量级,其严格的数学定义是:若T(n)和f(n)是定义在正整数集合上的两个函数,则存在正常数C和no,使得当n≥n时,都满足0≤T(n)≤C(n)。
算法的时间复杂度不仅依赖于问题的规模n,也取决于待输入数据的性质(如输入数据元素
的初始状态)。例如,在数组A0..n-1]中,查找给定值k的算法大致如下:
(1)i=n-1;
(2)while (i>=0& (A[i]!=k))
(3)i—;
(4) return 1;
该算法中语句3 (基本运算)的频度不仅与间题规模n有关,而且与输入实例中A的各元素的取
值及k的取值有关:
➊若A中没有与k相等的元素,则语句3的频度f(n)=n。
②若A的最后一个元素等于k,则语句3的频度f(m)是常数0。
最坏时间复杂度是指在最坏情况下,算法的时间复杂度。
平均时间复杂度是指所有可能输入实例在等概率出现的情况下,算法的期望运行时间。
最好时间复杂度是指在最好情况下,算法的时间复杂度。
- -般总是考虑在最坏情况下的时间复杂度,以保证算法的运行时间不会比它更长。
在分析一个程序的时间复杂性时,有以下两条规则:
a)加法规则.
T(n) = T(1)+ T:() = 0(1)) + ())= (max(n), g())
b)乘法规则
T(n)= T(n)xT:(n) = 0(n)xO(g(m)) = 0(n)xg(m))
常见的渐近时间复杂度为
0(1)< 0(ogxn) < 0(m) < 0(nlog2n) < 0(n7) < 0(n)< 0(2”)< 0(n!) < 0(m”)
2.空间复杂度
算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它是问题规模n的函数。记为
S(m) = O(g(m))
一个程序在执行时除需要存储空间来存放本身所用的指令、常数、变量和输入数据外,还需
要- -些对数据进行操作的工作单元和存储- - 些为实现计算所需信息的辅助空间。若输入数据所占
空间只取决于问题本身,和算法无关,则只需分析除输入和程序之外的额外空间。
算法原地工作是指算法所需的辅助空间为常量,即0(1)。