思路总结

本节内容为自己看完整章后总结出的思路性文字,介绍本章的大体思维路线。
第三章介绍了单一型裂纹的断裂判据,本章在此基础上,介绍复合型裂纹的断裂判据。
脆性材料也就是线弹性材料,在应力的计算可以采用叠加原理。
单一型裂纹的扩展方向为裂纹本身的方向,而复合型的,要解决两个问题。

  • 裂纹扩展方向(往哪个方向扩展)
  • 裂纹扩展判据(什么情况下会扩展) :::info 这里的方法论上,就是典型的科学假设的方法。给出基本假设,推导相关理论,实验求取参数或者验证理论的正确性。 :::

    最大周向拉应力理论

    基本假设

  • 裂纹沿着最大周向拉应力的方向扩展

第四章:复合型裂纹的脆性断裂判据 - 图2

  • 最大拉应力达到临界值后扩展

第四章:复合型裂纹的脆性断裂判据 - 图3

Ⅰ Ⅱ型复合裂纹的推导

受力状态

40620a985b2566715b46a04af827062.jpg

既有正应力,也有切应力。
第四章:复合型裂纹的脆性断裂判据 - 图5

分析

解耦合,假定Ⅰ 型裂纹K由正应力决定,与剪应力无关,Ⅱ型裂纹K由剪应力决定,与正应力无关。
得到:
第四章:复合型裂纹的脆性断裂判据 - 图6
应力公式转换成极坐标,在按照线性叠加原理,直接相加。这里不给出公式了。
第四章:复合型裂纹的脆性断裂判据 - 图7
根据假设(1),得到:

  1. 如果第四章:复合型裂纹的脆性断裂判据 - 图8
  2. 那么就是后面括号等于零。

第四章:复合型裂纹的脆性断裂判据 - 图9
接下来的分析有意思了!
解出来(4.1.10)的第四章:复合型裂纹的脆性断裂判据 - 图10值,然后计算:
第四章:复合型裂纹的脆性断裂判据 - 图11
根据假设(2),得到:
第四章:复合型裂纹的脆性断裂判据 - 图12
这里的第四章:复合型裂纹的脆性断裂判据 - 图13为材料的临界值,可以通过Ⅰ 型裂纹的第四章:复合型裂纹的脆性断裂判据 - 图14来确定。 :::info 关于断裂准则的宏观理解
断裂准则的公式左边为一物理量,是变量,右边是一常数,一般与材料有关。
在本节中,裂纹为复合裂纹,公式左边是一个复合物理量,右边是一个常数,这个常数与裂纹的类型无关,也就是说这个常数既适用于单一型的裂纹,也适用于复合型的裂纹,那么,我们就可以根据单一型的裂纹来推导计算或者实测该常数。 :::

  1. 我们用纯Ⅰ 型裂纹来分析

第四章:复合型裂纹的脆性断裂判据 - 图15,根据(4.1.9),可以得到第四章:复合型裂纹的脆性断裂判据 - 图16
那么,公式(4.1.10)变成:
第四章:复合型裂纹的脆性断裂判据 - 图17
达到临界值后
第四章:复合型裂纹的脆性断裂判据 - 图18
整理(4.1.10)和(4.1.13)得到:
第四章:复合型裂纹的脆性断裂判据 - 图19
公式(4.1.14)就是最大周向拉应力理论建立的Ⅰ 、Ⅱ型复合裂纹的断裂准则。

  1. 我们用纯Ⅱ型来分析

第四章:复合型裂纹的脆性断裂判据 - 图20
解得:第四章:复合型裂纹的脆性断裂判据 - 图21,代入(4.1.14)得到:
第四章:复合型裂纹的脆性断裂判据 - 图22


接下来分析裂纹初始角度的作用。把(4.1.5)代入(4.1.9)得到:
第四章:复合型裂纹的脆性断裂判据 - 图23
那么,给出第四章:复合型裂纹的脆性断裂判据 - 图24就可以算出第四章:复合型裂纹的脆性断裂判据 - 图25
第四章:复合型裂纹的脆性断裂判据 - 图26代入到(4.1.14)可以求出临界应力。
第四章:复合型裂纹的脆性断裂判据 - 图27

能量释放率理论

与格里菲斯的能量理论思路类似,都是裂纹尖端释放的能量等于形成新表面的能量。不同的是裂纹尖端裂纹的扩展方向不一定是沿着裂纹面的方向。

基本假设

  1. 方向:裂纹沿着最大能量释放率的方向扩展。

第四章:复合型裂纹的脆性断裂判据 - 图28

  1. 该方向的能量释放率达到临界值。

第四章:复合型裂纹的脆性断裂判据 - 图29

Ⅰ-Ⅲ型复合

对于Ⅰ-Ⅲ复合裂纹,试验证明裂纹沿着原方向扩展。
第四章:复合型裂纹的脆性断裂判据 - 图30K1%5E2%7D%7BE%7D%2B%5Cfrac%7B(1%2B%5Cupsilon)K_3%5E2%7D%7BE%7D%3DG_c%3C%2Ftitle%3E%0A%3Cdefs%20aria-hidden%3D%22true%22%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-47%22%20d%3D%22M50%20252Q50%20367%20117%20473T286%20641T490%20704Q580%20704%20633%20653Q642%20643%20648%20636T656%20626L657%20623Q660%20623%20684%20649Q691%20655%20699%20663T715%20679T725%20690L740%20705H746Q760%20705%20760%20698Q760%20694%20728%20561Q692%20422%20692%20421Q690%20416%20687%20415T669%20413H653Q647%20419%20647%20422Q647%20423%20648%20429T650%20449T651%20481Q651%20552%20619%20605T510%20659Q492%20659%20471%20656T418%20643T357%20615T294%20567T236%20496T189%20394T158%20260Q156%20242%20156%20221Q156%20173%20170%20136T206%2079T256%2045T308%2028T353%2024Q407%2024%20452%2047T514%20106Q517%20114%20529%20161T541%20214Q541%20222%20528%20224T468%20227H431Q425%20233%20425%20235T427%20254Q431%20267%20437%20273H454Q494%20271%20594%20271Q634%20271%20659%20271T695%20272T707%20272Q721%20272%20721%20263Q721%20261%20719%20249Q714%20230%20709%20228Q706%20227%20694%20227Q674%20227%20653%20224Q646%20221%20643%20215T629%20164Q620%20131%20614%20108Q589%206%20586%203Q584%201%20581%201Q571%201%20553%2021T530%2052Q530%2053%20528%2052T522%2047Q448%20-22%20322%20-22Q201%20-22%20126%2055T50%20252Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-6D%22%20d%3D%22M41%2046H55Q94%2046%20102%2060V68Q102%2077%20102%2091T102%20122T103%20161T103%20203Q103%20234%20103%20269T102%20328V351Q99%20370%2088%20376T43%20385H25V408Q25%20431%2027%20431L37%20432Q47%20433%2065%20434T102%20436Q119%20437%20138%20438T167%20441T178%20442H181V402Q181%20364%20182%20364T187%20369T199%20384T218%20402T247%20421T285%20437Q305%20442%20336%20442Q351%20442%20364%20440T387%20434T406%20426T421%20417T432%20406T441%20395T448%20384T452%20374T455%20366L457%20361L460%20365Q463%20369%20466%20373T475%20384T488%20397T503%20410T523%20422T546%20432T572%20439T603%20442Q729%20442%20740%20329Q741%20322%20741%20190V104Q741%2066%20743%2059T754%2049Q775%2046%20803%2046H819V0H811L788%201Q764%202%20737%202T699%203Q596%203%20587%200H579V46H595Q656%2046%20656%2062Q657%2064%20657%20200Q656%20335%20655%20343Q649%20371%20635%20385T611%20402T585%20404Q540%20404%20506%20370Q479%20343%20472%20315T464%20232V168V108Q464%2078%20465%2068T468%2055T477%2049Q498%2046%20526%2046H542V0H534L510%201Q487%202%20460%202T422%203Q319%203%20310%200H302V46H318Q379%2046%20379%2062Q380%2064%20380%20200Q379%20335%20378%20343Q372%20371%20358%20385T334%20402T308%20404Q263%20404%20229%20370Q202%20343%20195%20315T187%20232V168V108Q187%2078%20188%2068T191%2055T200%2049Q221%2046%20249%2046H265V0H257L234%201Q210%202%20183%202T145%203Q42%203%2033%200H25V46H41Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-61%22%20d%3D%22M137%20305T115%20305T78%20320T63%20359Q63%20394%2097%20421T218%20448Q291%20448%20336%20416T396%20340Q401%20326%20401%20309T402%20194V124Q402%2076%20407%2058T428%2040Q443%2040%20448%2056T453%20109V145H493V106Q492%2066%20490%2059Q481%2029%20455%2012T400%20-6T353%2012T329%2054V58L327%2055Q325%2052%20322%2049T314%2040T302%2029T287%2017T269%206T247%20-2T221%20-8T190%20-11Q130%20-11%2082%2020T34%20107Q34%20128%2041%20147T68%20188T116%20225T194%20253T304%20268H318V290Q318%20324%20312%20340Q290%20411%20215%20411Q197%20411%20181%20410T156%20406T148%20403Q170%20388%20170%20359Q170%20334%20154%20320ZM126%20106Q126%2075%20150%2051T209%2026Q247%2026%20276%2049T315%20109Q317%20116%20318%20175Q318%20233%20317%20233Q309%20233%20296%20232T251%20223T193%20203T147%20166T126%20106Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-78%22%20d%3D%22M201%200Q189%203%20102%203Q26%203%2017%200H11V46H25Q48%2047%2067%2052T96%2061T121%2078T139%2096T160%20122T180%20150L226%20210L168%20288Q159%20301%20149%20315T133%20336T122%20351T113%20363T107%20370T100%20376T94%20379T88%20381T80%20383Q74%20383%2044%20385H16V431H23Q59%20429%20126%20429Q219%20429%20229%20431H237V385Q201%20381%20201%20369Q201%20367%20211%20353T239%20315T268%20274L272%20270L297%20304Q329%20345%20329%20358Q329%20364%20327%20369T322%20376T317%20380T310%20384L307%20385H302V431H309Q324%20428%20408%20428Q487%20428%20493%20431H499V385H492Q443%20385%20411%20368Q394%20360%20377%20341T312%20257L296%20236L358%20151Q424%2061%20429%2057T446%2050Q464%2046%20499%2046H516V0H510H502Q494%201%20482%201T457%202T432%202T414%203Q403%203%20377%203T327%201L304%200H295V46H298Q309%2046%20320%2051T331%2063Q331%2065%20291%20120L250%20175Q249%20174%20219%20133T185%2088Q181%2083%20181%2074Q181%2063%20188%2055T206%2046Q208%2046%20208%2023V0H201Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-3D%22%20d%3D%22M56%20347Q56%20360%2070%20367H707Q722%20359%20722%20347Q722%20336%20708%20328L390%20327H72Q56%20332%2056%20347ZM56%20153Q56%20168%2072%20173H708Q722%20163%20722%20153Q722%20140%20707%20133H70Q56%20140%2056%20153Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-31%22%20d%3D%22M213%20578L200%20573Q186%20568%20160%20563T102%20556H83V602H102Q149%20604%20189%20617T245%20641T273%20663Q275%20666%20285%20666Q294%20666%20302%20660V361L303%2061Q310%2054%20315%2052T339%2048T401%2046H427V0H416Q395%203%20257%203Q121%203%20100%200H88V46H114Q136%2046%20152%2046T177%2047T193%2050T201%2052T207%2057T213%2061V578Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2B%22%20d%3D%22M56%20237T56%20250T70%20270H369V420L370%20570Q380%20583%20389%20583Q402%20583%20409%20568V270H707Q722%20262%20722%20250T707%20230H409V-68Q401%20-82%20391%20-82H389H387Q375%20-82%20369%20-68V230H70Q56%20237%2056%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-33%22%20d%3D%22M127%20463Q100%20463%2085%20480T69%20524Q69%20579%20117%20622T233%20665Q268%20665%20277%20664Q351%20652%20390%20611T430%20522Q430%20470%20396%20421T302%20350L299%20348Q299%20347%20308%20345T337%20336T375%20315Q457%20262%20457%20175Q457%2096%20395%2037T238%20-22Q158%20-22%20100%2021T42%20130Q42%20158%2060%20175T105%20193Q133%20193%20151%20175T169%20130Q169%20119%20166%20110T159%2094T148%2082T136%2074T126%2070T118%2067L114%2066Q165%2021%20238%2021Q293%2021%20321%2074Q338%20107%20338%20175V195Q338%20290%20274%20322Q259%20328%20213%20329L171%20330L168%20332Q166%20335%20166%20348Q166%20366%20174%20366Q202%20366%20232%20371Q266%20376%20294%20413T322%20525V533Q322%20590%20287%20612Q265%20626%20240%20626Q208%20626%20181%20615T143%20592T132%20580H135Q138%20579%20143%20578T153%20573T165%20566T175%20555T183%20540T186%20520Q186%20498%20172%20481T127%20463Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-28%22%20d%3D%22M94%20250Q94%20319%20104%20381T127%20488T164%20576T202%20643T244%20695T277%20729T302%20750H315H319Q333%20750%20333%20741Q333%20738%20316%20720T275%20667T226%20581T184%20443T167%20250T184%2058T225%20-81T274%20-167T316%20-220T333%20-241Q333%20-250%20318%20-250H315H302L274%20-226Q180%20-141%20137%20-14T94%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-2212%22%20d%3D%22M84%20237T84%20250T98%20270H679Q694%20262%20694%20250T679%20230H98Q84%20237%2084%20250Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-3C5%22%20d%3D%22M413%20384Q413%20406%20432%20424T473%20443Q492%20443%20507%20425T523%20367Q523%20334%20508%20270T468%20153Q424%2063%20373%2027T282%20-10H268Q220%20-10%20186%202T135%2036T111%2078T104%20121Q104%20170%20138%20262T173%20379Q173%20380%20173%20381Q173%20390%20173%20393T169%20400T158%20404H154Q131%20404%20112%20385T82%20344T65%20302T57%20280Q55%20278%2041%20278H27Q21%20284%2021%20287Q21%20299%2034%20333T82%20404T161%20441Q200%20441%20225%20419T250%20355Q248%20336%20247%20334Q247%20331%20232%20291T201%20199T185%20118Q185%2068%20211%2047T275%2026Q317%2026%20355%2057T416%20132T452%20216T465%20277Q465%20301%20457%20318T439%20343T421%20361T413%20384Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-32%22%20d%3D%22M109%20429Q82%20429%2066%20447T50%20491Q50%20562%20103%20614T235%20666Q326%20666%20387%20610T449%20465Q449%20422%20429%20383T381%20315T301%20241Q265%20210%20201%20149L142%2093L218%2092Q375%2092%20385%2097Q392%2099%20409%20186V189H449V186Q448%20183%20436%2095T421%203V0H50V19V31Q50%2038%2056%2046T86%2081Q115%20113%20136%20137Q145%20147%20170%20174T204%20211T233%20244T261%20278T284%20308T305%20340T320%20369T333%20401T340%20431T343%20464Q343%20527%20309%20573T212%20619Q179%20619%20154%20602T119%20569T109%20550Q109%20549%20114%20549Q132%20549%20151%20535T170%20489Q170%20464%20154%20447T109%20429Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMAIN-29%22%20d%3D%22M60%20749L64%20750Q69%20750%2074%20750H86L114%20726Q208%20641%20251%20514T294%20250Q294%20182%20284%20119T261%2012T224%20-76T186%20-143T145%20-194T113%20-227T90%20-246Q87%20-249%2086%20-250H74Q66%20-250%2063%20-250T58%20-247T55%20-238Q56%20-237%2066%20-225Q221%20-64%20221%20250T66%20725Q56%20737%2055%20738Q55%20746%2060%20749Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-4B%22%20d%3D%22M285%20628Q285%20635%20228%20637Q205%20637%20198%20638T191%20647Q191%20649%20193%20661Q199%20681%20203%20682Q205%20683%20214%20683H219Q260%20681%20355%20681Q389%20681%20418%20681T463%20682T483%20682Q500%20682%20500%20674Q500%20669%20497%20660Q496%20658%20496%20654T495%20648T493%20644T490%20641T486%20639T479%20638T470%20637T456%20637Q416%20636%20405%20634T387%20623L306%20305Q307%20305%20490%20449T678%20597Q692%20611%20692%20620Q692%20635%20667%20637Q651%20637%20651%20648Q651%20650%20654%20662T659%20677Q662%20682%20676%20682Q680%20682%20711%20681T791%20680Q814%20680%20839%20681T869%20682Q889%20682%20889%20672Q889%20650%20881%20642Q878%20637%20862%20637Q787%20632%20726%20586Q710%20576%20656%20534T556%20455L509%20418L518%20396Q527%20374%20546%20329T581%20244Q656%2067%20661%2061Q663%2059%20666%2057Q680%2047%20717%2046H738Q744%2038%20744%2037T741%2019Q737%206%20731%200H720Q680%203%20625%203Q503%203%20488%200H478Q472%206%20472%209T474%2027Q478%2040%20480%2043T491%2046H494Q544%2046%20544%2071Q544%2075%20517%20141T485%20216L427%20354L359%20301L291%20248L268%20155Q245%2063%20245%2058Q245%2051%20253%2049T303%2046H334Q340%2037%20340%2035Q340%2019%20333%205Q328%200%20317%200Q314%200%20280%201T180%202Q118%202%2085%202T49%201Q31%201%2031%2011Q31%2013%2034%2025Q38%2041%2042%2043T65%2046Q92%2046%20125%2049Q139%2052%20144%2061Q147%2065%20216%20339T285%20628Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-45%22%20d%3D%22M492%20213Q472%20213%20472%20226Q472%20230%20477%20250T482%20285Q482%20316%20461%20323T364%20330H312Q311%20328%20277%20192T243%2052Q243%2048%20254%2048T334%2046Q428%2046%20458%2048T518%2061Q567%2077%20599%20117T670%20248Q680%20270%20683%20272Q690%20274%20698%20274Q718%20274%20718%20261Q613%207%20608%202Q605%200%20322%200H133Q31%200%2031%2011Q31%2013%2034%2025Q38%2041%2042%2043T65%2046Q92%2046%20125%2049Q139%2052%20144%2061Q146%2066%20215%20342T285%20622Q285%20629%20281%20629Q273%20632%20228%20634H197Q191%20640%20191%20642T193%20659Q197%20676%20203%20680H757Q764%20676%20764%20669Q764%20664%20751%20557T737%20447Q735%20440%20717%20440H705Q698%20445%20698%20453L701%20476Q704%20500%20704%20528Q704%20558%20697%20578T678%20609T643%20625T596%20632T532%20634H485Q397%20633%20392%20631Q388%20629%20386%20622Q385%20619%20355%20499T324%20377Q347%20376%20372%20376H398Q464%20376%20489%20391T534%20472Q538%20488%20540%20490T557%20493Q562%20493%20565%20493T570%20492T572%20491T574%20487T577%20483L544%20351Q511%20218%20508%20216Q505%20213%20492%20213Z%22%3E%3C%2Fpath%3E%0A%3Cpath%20stroke-width%3D%221%22%20id%3D%22E1-MJMATHI-63%22%20d%3D%22M34%20159Q34%20268%20120%20355T306%20442Q362%20442%20394%20418T427%20355Q427%20326%20408%20306T360%20285Q341%20285%20330%20295T319%20325T330%20359T352%20380T366%20386H367Q367%20388%20361%20392T340%20400T306%20404Q276%20404%20249%20390Q228%20381%20206%20359Q162%20315%20142%20235T121%20119Q121%2073%20147%2050Q169%2026%20205%2026H209Q321%2026%20394%20111Q403%20121%20406%20121Q410%20121%20419%20112T429%2098T420%2083T391%2055T346%2025T282%200T202%20-11Q127%20-11%2081%2037T34%20159Z%22%3E%3C%2Fpath%3E%0A%3C%2Fdefs%3E%0A%3Cg%20stroke%3D%22currentColor%22%20fill%3D%22currentColor%22%20stroke-width%3D%220%22%20transform%3D%22matrix(1%200%200%20-1%200%200)%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-47%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(786%2C-150)%22%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-6D%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-61%22%20x%3D%22833%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-78%22%20x%3D%221334%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%222481%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3537%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-47%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221112%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%225000%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(6000%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-47%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%221112%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%227519%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(8297%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(397%2C0)%22%3E%0A%3Crect%20stroke%3D%22none%22%20width%3D%224972%22%20height%3D%2260%22%20x%3D%220%22%20y%3D%22220%22%3E%3C%2Frect%3E%0A%3Cg%20transform%3D%22translate(60%2C827)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%22389%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%221112%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(2112%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-3C5%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%22764%22%20y%3D%22513%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%223107%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3496%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-4B%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221274%22%20y%3D%22488%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%221201%22%20y%3D%22-435%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-45%22%20x%3D%222103%22%20y%3D%22-701%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%2214009%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(14788%2C0)%22%3E%0A%3Cg%20transform%3D%22translate(342%2C0)%22%3E%0A%3Crect%20stroke%3D%22none%22%20width%3D%224518%22%20height%3D%2260%22%20x%3D%220%22%20y%3D%22220%22%3E%3C%2Frect%3E%0A%3Cg%20transform%3D%22translate(60%2C842)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-31%22%20x%3D%22389%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2B%22%20x%3D%221112%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-3C5%22%20x%3D%222112%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%222653%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(3042%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-4B%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-32%22%20x%3D%221274%22%20y%3D%22488%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMAIN-33%22%20x%3D%221201%22%20y%3D%22-434%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-45%22%20x%3D%221876%22%20y%3D%22-701%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2220046%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(21103%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-47%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-63%22%20x%3D%221112%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=G%5Cmax%3DG1%2BG_3%3D%5Cfrac%7B%281-%5Cupsilon%5E2%29K_1%5E2%7D%7BE%7D%2B%5Cfrac%7B%281%2B%5Cupsilon%29K_3%5E2%7D%7BE%7D%3DG_c&id=QCoO1)
根据上小结相同的思路,用单一裂纹形式的来推导临界值,也就是从一般到特殊的原理
![](https://cdn.nlark.com/yuque/__latex/d8beb7525dc445bf72555fbe5f847cb6.svg#card=math&code=G_c%3D%5Cfrac%7B1-%5Cupsilon%5E2%7D%7BE%7DK
%7B1c%7D%5E2&id=EjNZL)
第四章:复合型裂纹的脆性断裂判据 - 图31
整理可得
第四章:复合型裂纹的脆性断裂判据 - 图32

含有Ⅱ型

这个分析很有意思,运用到应力强度因子的概念以及多次极限的方法。
对于含有Ⅱ型的复合裂纹,一二,或者一二三。需要考虑角度加以分析。下图所示,有主裂纹和支裂纹,并且两套坐标系。
b25ae7f3e3f090ae5e78d8238909c7b.jpg
纯Ⅰ ,纯Ⅱ型能量计算,如果沿着裂纹本身方向扩展。
第四章:复合型裂纹的脆性断裂判据 - 图34
如果支裂纹沿着本身平面扩展,那么有,上面的横线代表支裂纹。
第四章:复合型裂纹的脆性断裂判据 - 图35
假设第四章:复合型裂纹的脆性断裂判据 - 图36支裂纹的尖端应力场趋近于原裂纹的应力场,即:
第四章:复合型裂纹的脆性断裂判据 - 图37
由第三章可知,当第四章:复合型裂纹的脆性断裂判据 - 图38,有
第四章:复合型裂纹的脆性断裂判据 - 图39
由应力定义应力强度因子
第四章:复合型裂纹的脆性断裂判据 - 图40
仿照上面两式,可以定义支裂纹的应力强度因子,就是上面两式,相关变量上面加横线,不再写出。
然后再令支裂纹长度趋于0。重要
得到支裂纹的应力强度因子的起始值
第四章:复合型裂纹的脆性断裂判据 - 图41
上面的计算都是准备计算,目的是得到支裂纹尖端的能量表达式。
把公式(4.2.10)的符号代换,可以得到支裂纹的能量表达式。
第四章:复合型裂纹的脆性断裂判据 - 图42
然后可以根据假设1,列出方程了。
第四章:复合型裂纹的脆性断裂判据 - 图43
然后用到了一个重要技巧,第四章:复合型裂纹的脆性断裂判据 - 图44在裂纹尖端收敛,那么可以令其近似等于极限值,这一技巧在建立应力强度因子的概念的时候就用到了。重要
(4.2.15)代入(4.2.17)得到
第四章:复合型裂纹的脆性断裂判据 - 图45
根据前面章节内容,有
第四章:复合型裂纹的脆性断裂判据 - 图46
(4.2.18)继续推导可得
第四章:复合型裂纹的脆性断裂判据 - 图47
解方程

  1. 括号里面等于0,

第四章:复合型裂纹的脆性断裂判据 - 图48
如此计算得到的第四章:复合型裂纹的脆性断裂判据 - 图49角度的能量释放率为
第四章:复合型裂纹的脆性断裂判据 - 图50 :::danger 此处计算存疑,书上给出的结果是上式,但是我自己手算和Mathematica计算得到的结果不是。 ::: 与(4.2.10)的原平面扩展的第四章:复合型裂纹的脆性断裂判据 - 图51比较,第四章:复合型裂纹的脆性断裂判据 - 图52,所以,达不到最大的能量释放率,该解废弃。

  1. 第四章:复合型裂纹的脆性断裂判据 - 图53,该解等价于第四章:复合型裂纹的脆性断裂判据 - 图54,也就是说,与最大周向应力准则等价!!重要

然后就是推导临界值的过程。最后得到的断裂准则为,与最大周向应力的完全相同(4.1.14)。

应变能密度因子理论

该理论由Sih(薛昌明)在1973年基于应变能密度场的概念而提出的,该理论计算简单,适用性广,与一些脆性断裂的实验吻合的很好。
弹性体变形后,在体内储存了应变能,单位体积的应变能称为应变能密度,对线弹性体而言,应变能密度为
第四章:复合型裂纹的脆性断裂判据 - 图55

E为弹性模量,第四章:复合型裂纹的脆性断裂判据 - 图56泊松比,第四章:复合型裂纹的脆性断裂判据 - 图57剪切弹性模量。
对于复合裂纹,应力按照线性叠加原理叠加,得到复合裂纹的裂纹尖端应力计算公式,这里不再给出。
代入(4.3.1)计算应变能密度
第四章:复合型裂纹的脆性断裂判据 - 图58
上述都是应变能密度场的理论,接下来引入应变能密度因子S。

第四章:复合型裂纹的脆性断裂判据 - 图59
S这个量,与第四章:复合型裂纹的脆性断裂判据 - 图60有关,可以表征场的特性。在此,分析下场的概念,场物理量是在基本物理量的基础上再分析得到的,比如在断裂力学中,应力应变场是基本物理量,而K因子等是在此基础上的新物理量,它表征场的强度。

基本假设

  1. 裂纹扩展方向为应变能密度因子极小值的方向。

第四章:复合型裂纹的脆性断裂判据 - 图61

  1. 极小值达到或者超过临界值,裂纹扩展。

第四章:复合型裂纹的脆性断裂判据 - 图62 :::info 此处为啥是极小值,之前的理论中都是极大值?
因为在这里,应变能密度是一个阻止扩展的力量,裂纹扩展需要给予超过应变能的能量,所以是极小值,而之前的理论都是计算裂纹的驱动力。 :::

公式推导

  1. 纯Ⅰ 型

第四章:复合型裂纹的脆性断裂判据 - 图63

  1. 纯Ⅱ型

第四章:复合型裂纹的脆性断裂判据 - 图64
第四章:复合型裂纹的脆性断裂判据 - 图65时,不满足二阶导数条件,所以取第四章:复合型裂纹的脆性断裂判据 - 图66
此时
第四章:复合型裂纹的脆性断裂判据 - 图67
达到临界值时
第四章:复合型裂纹的脆性断裂判据 - 图68
得到
第四章:复合型裂纹的脆性断裂判据 - 图69

  1. 纯Ⅲ型

相同的分析方法,得到
第四章:复合型裂纹的脆性断裂判据 - 图70