并发控制
为啥要进行并发控制?
并发的任务对同一个临界资源进行操作,如果不采取措施,可能导致不一致,故必须进行并发控制(Concurrency Control)。
技术上,通常如何进行并发控制?
通过并发控制保证数据一致性的常见手段有:
- 锁(Locking)
- 数据多版本(Multi Versioning)
锁
如何使用普通锁保证一致性?
- 操作数据前,锁住,实施互斥,不允许其他的并发任务操作;
- 操作完成后,释放锁,让其他任务执行;
如此这般,来保证一致性。
普通锁存在什么问题?
简单的锁住太过粗暴,连“读任务”也无法并行,任务执行过程本质上是串行的。
于是出现了共享锁与排他锁:
- 共享锁(Share Locks,记为S锁),读取数据时加S锁
排他锁(eXclusive Locks,记为X锁),修改数据时加X锁
共享锁与排他锁的玩法是:共享锁之间不互斥,简记为:读读可以并行
排他锁与任何锁互斥,简记为:写读,写写不可以并行
可以看到,一旦写数据的任务没有完成,数据是不能被其他任务读取的,这对并发度有较大的影响。
有没有可能,进一步提高并发呢?
即使写任务没有完成,其他读任务也可能并发,这就引出了数据多版本。
数据多版本
数据多版本是一种能够进一步提高并发的方法,它的核心原理是:
- 写任务发生时,将数据克隆一份,以版本号区分;
- 写任务操作新克隆的数据,直至提交;
- 并发读任务可以继续读取旧版本的数据,不至于阻塞;
如上图:
- 最开始数据的版本是V0;
- T1时刻发起了一个写任务,这是把数据clone了一份,进行修改,版本变为V1,但任务还未完成;
- T2时刻并发了一个读任务,依然可以读V0版本的数据;
- T3时刻又并发了一个读任务,依然不会阻塞;
可以看到,数据多版本,通过“读取旧版本数据”能够极大提高任务的并发度。
提高并发的演进思路,就在如此:
- 普通锁,本质是串行执行
- 读写锁,可以实现读读并发
- 数据多版本,可以实现读写并发
redo、undo、回滚段
在进一步介绍 InnoDB 如何使用“读取旧版本数据”极大提高任务的并发度之前,有必要先介绍下 redo 日志,undo 日志,回滚段(rollback segment)。
为什么要有redo日志?
数据库事务提交后,必须将更新后的数据刷到磁盘上,以保证 ACID 特性。磁盘随机写性能较低,如果每次都刷盘,会极大影响数据库的吞吐量。
优化方式是,将修改行为先写到 redo 日志里(此时变成了顺序写),再定期将数据刷到磁盘上,这样能极大提高性能。
这里的架构设计方法是,随机写优化为顺序写,思路更重要。
假如某一时刻,数据库崩溃,还没来得及刷盘的数据,在数据库重启后,会重做 redo 日志里的内容,以保证已提交事务对数据产生的影响都刷到磁盘上。
一句话,redo 日志用于保障,已提交事务的 ACID 特性。
为什么要有undo日志?
数据库事务未提交时,会将事务修改数据的镜像(即修改前的旧版本)存放到 undo 日志里,当事务回滚时,或者数据库奔溃时,可以利用 undo 日志,即旧版本数据,撤销未提交事务对数据库产生的影响。
- 对于 insert 操作,undo 日志记录新数据的 PK(ROW_ID),回滚时直接删除;
- 对于 delete/update 操作,undo 日志记录旧数据 row,回滚时直接恢复;
他们分别存放在不同的 buffer 里。
一句话,undo 日志用于保障,未提交事务不会对数据库的 ACID 特性产生影响。
什么是回滚段?
存储 undo 日志的地方,是回滚段。
undo 日志和回滚段和 InnoDB 的 MVCC 密切相关,这里举个例子展开说明一下。
表:t(id PK, name);
数据为:
1, shenjian
2, zhangsan
3, lisi
此时没有事务未提交,故回滚段是空的。
接着启动了一个事务:
start trx;
delete (1, shenjian);
update set(3, lisi) to (3, xxx);
insert (4, wangwu);
并且事务处于未提交的状态。
可以看到:
- 被删除前的 (1, shenjian) 作为旧版本数据,进入了回滚段;
- 被修改前的 (3, lisi) 作为旧版本数据,进入了回滚段;
被插入的数据,PK(4) 进入了回滚段;
接下来,假如事务 rollback,此时可以通过回滚段里的 undo 日志回滚,假设事务提交,回滚段里的 undo 日志可以删除。
可以看到:
- 被删除的旧数据恢复了;
- 被修改的旧数据也恢复了;
- 被插入的数据,删除了;
InnoDB是基于多版本并发控制的存储引擎
MVCC 就是通过“读取旧版本数据”来降低并发事务的锁冲突,提高任务的并发度。
核心问题:
- 旧版本数据存储在哪里?
- 存储旧版本数据,对 MySQL 和 InnoDB 原有架构是否有巨大冲击?
通过上文 undo 日志和回滚段的铺垫,这两个问题就非常好回答了:
- 旧版本数据存储在回滚段里;
对 MySQL 和 InnoDB 原有架构体系冲击不大;
InnoDB 的内核,会对所有 row 数据增加三个内部属性:DB_TRX_ID,6字节,记录每一行最近一次修改它的事务 ID;
- DB_ROLL_PTR,7字节,记录指向回滚段 undo 日志的指针;
DB_ROW_ID,6字节,单调递增的行 ID;
InnoDB 为何能够做到这么高的并发?
回滚段里的数据,其实是历史数据的快照(snapshot),这些数据是不会被修改,select 可以肆无忌惮的并发读取他们。
快照读(Snapshot Read),这种一致性不加锁的读(Consistent Nonlocking Read),就是 InnoDB 并发如此之高的核心原因之一。
这里的一致性是指,事务读取到的数据,要么是事务开始前就已经存在的数据(当然,是其他已提交事务产生的),要么是事务自身插入或者修改的数据。
什么样的 select 是快照读?**
除非显示加锁,普通的select语句都是快照读,例如:
select * from t where id>2;
这里的显示加锁,非快照读是指:
select * from t where id>2 lock in share mode;
select * from t where id>2 for update;
总结
- 常见并发控制保证数据一致性的方法有锁,数据多版本;
- 普通锁串行,读写锁读读并行,数据多版本读写并行;
- redo 日志保证已提交事务的 ACID 特性,设计思路是,通过顺序写替代随机写,提高并发;
- undo 日志用来回滚未提交的事务,它存储在回滚段里;
- InnoDB 是基于 MVCC 的存储引擎,它利用了存储在回滚段里的 undo 日志,即数据的旧版本,提高并发;
- InnoDB 之所以并发高,快照读不加锁;
- InnoDB 所有普通 select 都是快照读;
本文的知识点均基于 MySQL5.6。
作者:殷建卫 链接:https://www.yuque.com/yinjianwei/vyrvkf/cky0ic 来源:殷建卫 - 架构笔记 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。