广度优先遍历(Breadth_First_Search),又称为广度优先搜索,简称BFS。
图7-5-3
如果说图的深度优先遍历类似树的前序遍历,那么图的广度优先遍历就类似于树的层序遍历了。
我们将图7-5-3的第一幅图稍微变形,变形原则是顶点A放置在最上第一层,让与它有边的顶点B、F为第二层,再让与B和F有边的顶点C、I、G、E为第三层,再将这四个顶点有边的D、H放在第四层,
如图7-5-3的第二幅图所示。此时在视觉上感觉图的形状发生了变化,其实顶点和边的关系还是完全相同的。
//以下是邻接矩阵结构的广度优先遍历算法。
/* 邻接矩阵的广度遍历算法 */
void BFSTraverse(MGraph G)
{
int i, j;
Queue Q;
for (i = 0; i < G.numVertexes; i++)
visited[i] = FALSE;
/* 初始化一辅助用的队列 */
InitQueue(&Q);
/* 对每一个顶点做循环 */
for (i = 0; i < G.numVertexes; i++)
{
/* 若是未访问过就处理 */
if (!visited[i])
{
/* 设置当前顶点访问过 */
visited[i]=TRUE;
/* 打印顶点,也可以其他操作 */
printf("%c ", G.vexs[i]);
/* 将此顶点入队列 */
EnQueue(&Q,i);
/* 若当前队列不为空 */
while (!QueueEmpty(Q))
{
/* 将队中元素出队列,赋值给i */
DeQueue(&Q, &i);
for (j = 0; j < G.numVertexes; j++)
{
/* 判断其他顶点若与当前顶点存在边且未访问过 */
if (G.arc[i][j] == 1 && !visited[j])
{
/* 将找到的此顶点标记为已访问 */
visited[j]=TRUE;
/* 打印顶点 */
printf("%c ", G.vexs[j]);
/* 将找到的此顶点入队列 */
EnQueue(&Q,j);
}
}
}
}
}
}
//对于邻接表的广度优先遍历,代码与邻接矩阵差异不大,代码如下。
/* 邻接表的广度遍历算法 */
void BFSTraverse(GraphAdjList GL)
{
int i;
EdgeNode *p;
Queue Q;
for (i = 0; i < GL->numVertexes; i++)
visited[i] = FALSE;
InitQueue(&Q);
for (i = 0; i < GL->numVertexes; i++)
{
if (!visited[i])
{
visited[i] = TRUE;
/* 打印顶点,也可以其他操作 */
printf("%c ", GL->adjList[i].data);
EnQueue(&Q, i);
while (!QueueEmpty(Q))
{
DeQueue(&Q, &i);
/* 找到当前顶点边表链表头指针 */
p = GL->adjList[i].firstedge;
while (p)
{
/* 若此顶点未被访问 */
if (!visited[p->adjvex])
{
visited[p->adjvex] = TRUE;
printf("%c ", GL->adjList[p->adjvex].data);
/* 将此顶点入队列 */
EnQueue(&Q, p->adjvex);
}
/* 指针指向下一个邻接点 */
p = p->next;
}
}
}
}
}
对比图的深度优先遍历与广度优先遍历算法,
你会发现,它们在
- 时间复杂度上是一样的,不同之处仅仅在于对顶点访问的顺序不同。
- 空间复杂度相同,都是O(n)[借助了堆栈or队列]。
可见两者在全图遍历上是没有优劣之分的,只是视不同的情况选择不同的算法。
不过如果图顶点和边非常多,不能在短时间内遍历完成,遍历的目的是为了寻找合适的顶点,那么选择哪种遍历就要仔细斟酌了。
- 深度优先更适合目标比较明确,以找到目标为主要目的的情况,
- 广度优先更适合在不断扩大遍历范围时找到相对最优解的情况。
这里还要再多说几句,对于深度和广度而言,已经不是简单的算法实现问题,完全可以上升到方法论的角度。
你求学是博览群书、不求甚解,还是深钻细研、鞭辟入里;
你旅游是走马观花、蜻蜓点水,还是下马看花、深度体验;
你交友是四海之内皆兄弟,还是人生得一知己足矣……其实都无对错之分,只视不同人的理解而有了不同的诠释。
我个人觉得深度和广度是既矛盾又统一的两个方面,偏颇都不可取,还望大家自己慢慢体会。