如何理解Inductive bias? :::info 个人理解,比如CNN假设特征具有局部性(Locality)的特性,就是一种归纳偏置。比如深度神经网络结构就偏好性的认为,层次化处理信息有更好效果。
    卷积神经网络认为信息具有空间局部性(locality),可以用滑动卷积共享权重方式降低参数空间;反馈神经网络则将时序信息考虑进来强调顺序重要性;图网络则是认为中心节点与邻居节点的相似性会更好引导信息流动。可以说深度学习时代,纷繁的网络结构创新就体现了不同的归纳性偏好。 ::: 归纳偏置在机器学习中是一种很微妙的概念:在机器学习中,很多学习算法经常会对学习的问题做一些假设,这些假设就称为归纳偏置(Inductive Bias)。归纳偏置这个译名可能不能很好地帮助理解,不妨拆解开来看:归纳(Induction)是自然科学中常用的两大方法之一(归纳与演绎, induction and deduction),指的是从一些例子中寻找共性、泛化,形成一个比较通用的规则的过程;偏置(Bias)是指我们对模型的偏好。
    因此,归纳偏置可以理解为,从现实生活中观察到的现象中归纳出一定的规则(heuristics),然后对模型做一定的约束,从而可以起到“模型选择”的作用,即从假设空间中选择出更符合现实规则的模型。其实,贝叶斯学习中的“先验(Prior)”这个叫法,可能比“归纳偏置”更直观一些。
    归纳偏置在机器学习中几乎无处不可见。老生常谈的“奥卡姆剃刀”原理,即希望学习到的模型复杂度更低,就是一种归纳偏置。另外,还可以看见一些更强的一些假设:KNN中假设特征空间中相邻的样本倾向于属于同一类;SVM中假设好的分类器应该最大化类别边界距离;等等。
    在深度学习方面也是一样。以神经网络为例,各式各样的网络结构/组件/机制往往就来源于归纳偏置。在卷积神经网络中,我们假设特征具有局部性(Locality)的特性,即当我们把相邻的一些特征放在一起,会更容易得到“解”;在循环神经网络中,我们假设每一时刻的计算依赖于历史计算结果;还有注意力机制,也是基于从人的直觉、生活经验归纳得到的规则。
    在自然语言处理领域赫赫有名的word2vec,以及一些基于共现窗口的词嵌入方法,都是基于分布式假设:A word’s meaning is given by the words that frequently appear close-by. 这当然也可以看作是一种归纳偏置;一些自然语言理解的模型中加入解析树,也可以类似地理解。都是为了选择“更好”的模型。