题目描述
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。
进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?
示例 1:
输入:nums1 = [1,3], nums2 = [2]输出:2.00000解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]输出:2.50000解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:
输入:nums1 = [0,0], nums2 = [0,0]输出:0.00000
示例 4:
输入:nums1 = [], nums2 = [1]输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = []输出:2.00000
提示:
- nums1.length == m
 - nums2.length == n
 - 0 <= m <= 1000
 - 0 <= n <= 1000
 - 1 <= m + n <= 2000
 - -106 <= nums1[i], nums2[i] <= 106
 
个人解法
Java
JavaScript
/*** @param {number[]} nums1* @param {number[]} nums2* @return {number}*/var findMedianSortedArrays = function(nums1, nums2) {var len1 = nums1.length;var len2 = nums2.length;var nums2Index = 0;var arr = nums1;for (var i = 0; i < len2; i++) {var j = 0;while (j < len1) {if (arr[j] > nums2[i]) {arr.splice(j, 0, nums2[i]);nums2Index++;len1++;break;}j++;}}if (nums2Index < len2) {for (var i = nums2Index; i < len2; i++) {arr.push(nums2[i]);len1++;}}var result = (arr[Math.floor((len1 - 1) / 2)] + arr[Math.ceil((len1 - 1) / 2)]) / 2;return len1 ? result : 0;};
更优解法
Java
JavaScript
/*** 二分解法* @param {number[]} nums1* @param {number[]} nums2* @return {number}*/var findMedianSortedArrays = function(nums1, nums2) {// make sure to do binary search for shorten arrayif (nums1.length > nums2.length) {[nums1, nums2] = [nums2, nums1]}const m = nums1.lengthconst n = nums2.lengthlet low = 0let high = mwhile(low <= high) {const i = low + Math.floor((high - low) / 2)const j = Math.floor((m + n + 1) / 2) - iconst maxLeftA = i === 0 ? -Infinity : nums1[i-1]const minRightA = i === m ? Infinity : nums1[i]const maxLeftB = j === 0 ? -Infinity : nums2[j-1]const minRightB = j === n ? Infinity : nums2[j]if (maxLeftA <= minRightB && minRightA >= maxLeftB) {return (m + n) % 2 === 1? Math.max(maxLeftA, maxLeftB): (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2} else if (maxLeftA > minRightB) {high = i - 1} else {low = low + 1}}};
