Spring Bean的生命周期是Spring面试热点问题。这个问题即考察对Spring的微观了解,又考察对Spring的宏观认识,想要答好并不容易!本文希望能够从源码角度入手,帮助面试者彻底搞定Spring Bean的生命周期。

1. 只有四个阶段

是的,Spring Bean的生命周期只有这四个阶段。把这四个阶段和每个阶段对应的扩展点糅合在一起虽然没有问题,但是这样非常凌乱,难以记忆。要彻底搞清楚Spring的生命周期,首先要把这四个阶段牢牢记住。实例化和属性赋值对应构造方法和setter方法的注入,初始化和销毁是用户能自定义扩展的两个阶段。在这四步之间穿插的各种扩展点,稍后会讲。

  1. 实例化 Instantiation
  2. 属性赋值 Populate
  3. 初始化 Initialization
  4. 销毁 Destruction

实例化 -> 属性赋值 -> 初始化 -> 销毁

主要逻辑都在doCreate()方法中,逻辑很清晰,就是顺序调用以下三个方法,这三个方法与三个生命周期阶段一一对应,非常重要,在后续扩展接口分析中也会涉及。

  1. createBeanInstance() -> 实例化
  2. populateBean() -> 属性赋值
  3. initializeBean() -> 初始化

源码如下,能证明实例化,属性赋值和初始化这三个生命周期的存在。关于本文的Spring源码都将忽略无关部分,便于理解:

  1. // 忽略了无关代码
  2. protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final @Nullable Object[] args)
  3. throws BeanCreationException {
  4. // Instantiate the bean.
  5. BeanWrapper instanceWrapper = null;
  6. if (instanceWrapper == null) {
  7. // 实例化阶段!
  8. instanceWrapper = createBeanInstance(beanName, mbd, args);
  9. }
  10. // Initialize the bean instance.
  11. Object exposedObject = bean;
  12. try {
  13. // 属性赋值阶段!
  14. populateBean(beanName, mbd, instanceWrapper);
  15. // 初始化阶段!
  16. exposedObject = initializeBean(beanName, exposedObject, mbd);
  17. }
  18. }

至于销毁,是在容器关闭时调用的,详见ConfigurableApplicationContext#close()

2. 常用扩展点

Spring生命周期相关的常用扩展点非常多,所以问题不是不知道,而是记不住或者记不牢。其实记不住的根本原因还是不够了解,这里通过源码+分类的方式帮大家记忆。

1. 第一大类:影响多个Bean的接口

实现了这些接口的Bean会切入到多个Bean的生命周期中。正因为如此,这些接口的功能非常强大,Spring内部扩展也经常使用这些接口,例如自动注入以及AOP的实现都和他们有关。

  • BeanPostProcessor
  • InstantiationAwareBeanPostProcessor

这两兄弟可能是Spring扩展中最重要的两个接口!InstantiationAwareBeanPostProcessor作用于实例化阶段的前后,BeanPostProcessor作用于初始化阶段的前后。正好和第一、第三个生命周期阶段对应。通过图能更好理解:

Spring Bean生命周期 - 图1

未命名文件 (1).png

InstantiationAwareBeanPostProcessor实际上继承了BeanPostProcessor接口,严格意义上来看他们不是两兄弟,而是两父子。但是从生命周期角度我们重点关注其特有的对实例化阶段的影响,图中省略了从BeanPostProcessor继承的方法。

  1. InstantiationAwareBeanPostProcessor extends BeanPostProcessor

InstantiationAwareBeanPostProcessor源码分析:
  • postProcessBeforeInstantiation调用点,忽略无关代码:
  1. @Override
  2. protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
  3. throws BeanCreationException {
  4. try {
  5. // Give BeanPostProcessors a chance to return a proxy instead of the target bean instance.
  6. // postProcessBeforeInstantiation方法调用点,这里就不跟进了,
  7. // 有兴趣的同学可以自己看下,就是for循环调用所有的InstantiationAwareBeanPostProcessor
  8. Object bean = resolveBeforeInstantiation(beanName, mbdToUse);
  9. if (bean != null) {
  10. return bean;
  11. }
  12. }
  13. try {
  14. // 上文提到的doCreateBean方法,可以看到
  15. // postProcessBeforeInstantiation方法在创建Bean之前调用
  16. Object beanInstance = doCreateBean(beanName, mbdToUse, args);
  17. if (logger.isTraceEnabled()) {
  18. logger.trace("Finished creating instance of bean '" + beanName + "'");
  19. }
  20. return beanInstance;
  21. }
  22. }

可以看到,postProcessBeforeInstantiation在doCreateBean之前调用,也就是在bean实例化之前调用的,英文源码注释解释道该方法的返回值会替换原本的Bean作为代理,这也是Aop等功能实现的关键点。

  • postProcessAfterInstantiation调用点,忽略无关代码:
  1. protected void populateBean(String beanName, RootBeanDefinition mbd, @Nullable BeanWrapper bw) {
  2. // Give any InstantiationAwareBeanPostProcessors the opportunity to modify the
  3. // state of the bean before properties are set. This can be used, for example,
  4. // to support styles of field injection.
  5. boolean continueWithPropertyPopulation = true;
  6. // InstantiationAwareBeanPostProcessor#postProcessAfterInstantiation()
  7. // 方法作为属性赋值的前置检查条件,在属性赋值之前执行,能够影响是否进行属性赋值!
  8. if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
  9. for (BeanPostProcessor bp : getBeanPostProcessors()) {
  10. if (bp instanceof InstantiationAwareBeanPostProcessor) {
  11. InstantiationAwareBeanPostProcessor ibp = (InstantiationAwareBeanPostProcessor) bp;
  12. if (!ibp.postProcessAfterInstantiation(bw.getWrappedInstance(), beanName)) {
  13. continueWithPropertyPopulation = false;
  14. break;
  15. }
  16. }
  17. }
  18. }
  19. // 忽略后续的属性赋值操作代码
  20. }

可以看到该方法在属性赋值方法内,但是在真正执行赋值操作之前。其返回值为boolean,返回false时可以阻断属性赋值阶段(continueWithPropertyPopulation = false;)。

关于BeanPostProcessor执行阶段的源码穿插在下文Aware接口的调用时机分析中,因为部分Aware功能的就是通过他实现的!只需要先记住BeanPostProcessor在初始化前后调用就可以了。

2. 第二大类:只调用一次的接口

这一大类接口的特点是功能丰富,常用于用户自定义扩展。
第二大类中又可以分为两类:

  1. Aware类型的接口
  2. 生命周期接口

无所不知的Aware

Aware类型的接口的作用就是让我们能够拿到Spring容器中的一些资源。基本都能够见名知意,Aware之前的名字就是可以拿到什么资源,例如BeanNameAware可以拿到BeanName,以此类推。调用时机需要注意:所有的Aware方法都是在初始化阶段之前调用的!
Aware接口众多,这里同样通过分类的方式帮助大家记忆。
Aware接口具体可以分为两组,至于为什么这么分,详见下面的源码分析。如下排列顺序同样也是Aware接口的执行顺序,能够见名知意的接口不再解释。

  1. Aware Group1
  1. BeanNameAware
  2. BeanClassLoaderAware
  3. BeanFactoryAware
  1. Aware Group2
  1. EnvironmentAware
  2. EmbeddedValueResolverAware 这个知道的人可能不多,实现该接口能够获取Spring EL解析器,用户的自定义注解需要支持spel表达式的时候可以使用,非常方便。
  3. ApplicationContextAware(ResourceLoaderAware\ApplicationEventPublisherAware\MessageSourceAware) 这几个接口可能让人有点懵,实际上这几个接口可以一起记,其返回值实质上都是当前的ApplicationContext对象,因为ApplicationContext是一个复合接口,如下:
  1. public interface ApplicationContext extends EnvironmentCapable, ListableBeanFactory, HierarchicalBeanFactory,
  2. MessageSource, ApplicationEventPublisher, ResourcePatternResolver {}

这里涉及到另一道面试题,ApplicationContext和BeanFactory的区别,可以从ApplicationContext继承的这几个接口入手,除去BeanFactory相关的两个接口就是ApplicationContext独有的功能,这里不详细说明。

Aware调用时机源码分析

详情如下,忽略了部分无关代码。代码位置就是我们上文提到的initializeBean方法详情,这也说明了Aware都是在初始化阶段之前调用的!

  1. // 见名知意,初始化阶段调用的方法
  2. protected Object initializeBean(final String beanName, final Object bean, @Nullable RootBeanDefinition mbd) {
  3. // 这里调用的是Group1中的三个Bean开头的Aware
  4. invokeAwareMethods(beanName, bean);
  5. Object wrappedBean = bean;
  6. // 这里调用的是Group2中的几个Aware,
  7. // 而实质上这里就是前面所说的BeanPostProcessor的调用点!
  8. // 也就是说与Group1中的Aware不同,这里是通过BeanPostProcessor(ApplicationContextAwareProcessor)实现的。
  9. wrappedBean = applyBeanPostProcessorsBeforeInitialization(wrappedBean, beanName);
  10. // 下文即将介绍的InitializingBean调用点
  11. invokeInitMethods(beanName, wrappedBean, mbd);
  12. // BeanPostProcessor的另一个调用点
  13. wrappedBean = applyBeanPostProcessorsAfterInitialization(wrappedBean, beanName);
  14. return wrappedBean;
  15. }

可以看到并不是所有的Aware接口都使用同样的方式调用。Bean××Aware都是在代码中直接调用的,而ApplicationContext相关的Aware都是通过BeanPostProcessor#postProcessBeforeInitialization()实现的。感兴趣的可以自己看一下ApplicationContextAwareProcessor这个类的源码,就是判断当前创建的Bean是否实现了相关的Aware方法,如果实现了会调用回调方法将资源传递给Bean。
至于Spring为什么这么实现,应该没什么特殊的考量。也许和Spring的版本升级有关。基于对修改关闭,对扩展开放的原则,Spring对一些新的Aware采用了扩展的方式添加。

BeanPostProcessor的调用时机也能在这里体现,包围住invokeInitMethods方法,也就说明了在初始化阶段的前后执行。

关于Aware接口的执行顺序,其实只需要记住第一组在第二组执行之前就行了。每组中各个Aware方法的调用顺序其实没有必要记,有需要的时候点进源码一看便知。

简单的两个生命周期接口

至于剩下的两个生命周期接口就很简单了,实例化和属性赋值都是Spring帮助我们做的,能够自己实现的有初始化和销毁两个生命周期阶段。

  1. InitializingBean 对应生命周期的初始化阶段,在上面源码的invokeInitMethods(beanName, wrappedBean, mbd);方法中调用。
    有一点需要注意,因为Aware方法都是执行在初始化方法之前,所以可以在初始化方法中放心大胆的使用Aware接口获取的资源,这也是我们自定义扩展Spring的常用方式。
    除了实现InitializingBean接口之外还能通过注解或者xml配置的方式指定初始化方法,至于这几种定义方式的调用顺序其实没有必要记。因为这几个方法对应的都是同一个生命周期,只是实现方式不同,我们一般只采用其中一种方式。
  2. DisposableBean 类似于InitializingBean,对应生命周期的销毁阶段,以ConfigurableApplicationContext#close()方法作为入口,实现是通过循环取所有实现了DisposableBean接口的Bean然后调用其destroy()方法 。感兴趣的可以自行跟一下源码。

3. 扩展阅读: BeanPostProcessor 注册时机与执行顺序

1. 注册时机

我们知道BeanPostProcessor也会注册为Bean,那么Spring是如何保证BeanPostProcessor在我们的业务Bean之前初始化完成呢?
请看我们熟悉的refresh()方法的源码,省略部分无关代码:

  1. @Override
  2. public void refresh() throws BeansException, IllegalStateException {
  3. synchronized (this.startupShutdownMonitor) {
  4. try {
  5. // Allows post-processing of the bean factory in context subclasses.
  6. postProcessBeanFactory(beanFactory);
  7. // Invoke factory processors registered as beans in the context.
  8. invokeBeanFactoryPostProcessors(beanFactory);
  9. // Register bean processors that intercept bean creation.
  10. // 所有BeanPostProcesser初始化的调用点
  11. registerBeanPostProcessors(beanFactory);
  12. // Initialize message source for this context.
  13. initMessageSource();
  14. // Initialize event multicaster for this context.
  15. initApplicationEventMulticaster();
  16. // Initialize other special beans in specific context subclasses.
  17. onRefresh();
  18. // Check for listener beans and register them.
  19. registerListeners();
  20. // Instantiate all remaining (non-lazy-init) singletons.
  21. // 所有单例非懒加载Bean的调用点
  22. finishBeanFactoryInitialization(beanFactory);
  23. // Last step: publish corresponding event.
  24. finishRefresh();
  25. }
  26. }

可以看出,Spring是先执行registerBeanPostProcessors()进行BeanPostProcessors的注册,然后再执行finishBeanFactoryInitialization初始化我们的单例非懒加载的Bean。

2. 执行顺序

BeanPostProcessor有很多个,而且每个BeanPostProcessor都影响多个Bean,其执行顺序至关重要,必须能够控制其执行顺序才行。关于执行顺序这里需要引入两个排序相关的接口:PriorityOrdered、Ordered

  • PriorityOrdered是一等公民,首先被执行,PriorityOrdered公民之间通过接口返回值排序
  • Ordered是二等公民,然后执行,Ordered公民之间通过接口返回值排序
  • 都没有实现是三等公民,最后执行

在以下源码中,可以很清晰的看到Spring注册各种类型BeanPostProcessor的逻辑,根据实现不同排序接口进行分组。优先级高的先加入,优先级低的后加入。

  1. // First, invoke the BeanDefinitionRegistryPostProcessors that implement PriorityOrdered.
  2. // 首先,加入实现了PriorityOrdered接口的BeanPostProcessors,顺便根据PriorityOrdered排了序
  3. String[] postProcessorNames =
  4. beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
  5. for (String ppName : postProcessorNames) {
  6. if (beanFactory.isTypeMatch(ppName, PriorityOrdered.class)) {
  7. currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
  8. processedBeans.add(ppName);
  9. }
  10. }
  11. sortPostProcessors(currentRegistryProcessors, beanFactory);
  12. registryProcessors.addAll(currentRegistryProcessors);
  13. invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
  14. currentRegistryProcessors.clear();
  15. // Next, invoke the BeanDefinitionRegistryPostProcessors that implement Ordered.
  16. // 然后,加入实现了Ordered接口的BeanPostProcessors,顺便根据Ordered排了序
  17. postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
  18. for (String ppName : postProcessorNames) {
  19. if (!processedBeans.contains(ppName) && beanFactory.isTypeMatch(ppName, Ordered.class)) {
  20. currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
  21. processedBeans.add(ppName);
  22. }
  23. }
  24. sortPostProcessors(currentRegistryProcessors, beanFactory);
  25. registryProcessors.addAll(currentRegistryProcessors);
  26. invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
  27. currentRegistryProcessors.clear();
  28. // Finally, invoke all other BeanDefinitionRegistryPostProcessors until no further ones appear.
  29. // 最后加入其他常规的BeanPostProcessors
  30. boolean reiterate = true;
  31. while (reiterate) {
  32. reiterate = false;
  33. postProcessorNames = beanFactory.getBeanNamesForType(BeanDefinitionRegistryPostProcessor.class, true, false);
  34. for (String ppName : postProcessorNames) {
  35. if (!processedBeans.contains(ppName)) {
  36. currentRegistryProcessors.add(beanFactory.getBean(ppName, BeanDefinitionRegistryPostProcessor.class));
  37. processedBeans.add(ppName);
  38. reiterate = true;
  39. }
  40. }
  41. sortPostProcessors(currentRegistryProcessors, beanFactory);
  42. registryProcessors.addAll(currentRegistryProcessors);
  43. invokeBeanDefinitionRegistryPostProcessors(currentRegistryProcessors, registry);
  44. currentRegistryProcessors.clear();
  45. }

根据排序接口返回值排序,默认升序排序,返回值越低优先级越高。

  1. /**
  2. * Useful constant for the highest precedence value.
  3. * @see java.lang.Integer#MIN_VALUE
  4. */
  5. int HIGHEST_PRECEDENCE = Integer.MIN_VALUE;
  6. /**
  7. * Useful constant for the lowest precedence value.
  8. * @see java.lang.Integer#MAX_VALUE
  9. */
  10. int LOWEST_PRECEDENCE = Integer.MAX_VALUE;

PriorityOrdered、Ordered接口作为Spring整个框架通用的排序接口,在Spring中应用广泛,也是非常重要的接口。

4. 总结

Spring Bean的生命周期分为四个阶段多个扩展点。扩展点又可以分为影响多个Bean影响单个Bean。整理如下:
四个阶段

  • 实例化 Instantiation
  • 属性赋值 Populate
  • 初始化 Initialization
  • 销毁 Destruction

多个扩展点

  • 影响多个Bean
    • BeanPostProcessor
    • InstantiationAwareBeanPostProcessor
  • 影响单个Bean
    • Aware
      • Aware Group1
        • BeanNameAware
        • BeanClassLoaderAware
        • BeanFactoryAware
      • Aware Group2
        • EnvironmentAware
        • EmbeddedValueResolverAware
        • ApplicationContextAware(ResourceLoaderAware\ApplicationEventPublisherAware\MessageSourceAware)
    • 生命周期
      • InitializingBean
      • DisposableBean

至此,Spring Bean的生命周期介绍完毕,由于作者水平有限难免有疏漏,欢迎留言纠错。