JSON数据源
Spark SQL可以自动推断JSON文件的元数据,并且加载其数据,创建一个DataFrame。可以使用SQLContext.read.json()方法,针对一个元素类型为String的RDD,或者是一个JSON文件。
但是要注意的是,这里使用的JSON文件与传统意义上的JSON文件是不一样的。每行都必须,也只能包含一个,单独的,自包含的,有效的JSON对象。不能让一个JSON对象分散在多行。否则会报错。
综合性复杂案例:查询成绩为80分以上的学生的基本信息与成绩信息
案例
/**
* JSON数据源
* @author Administrator
*
*/
public class JSONDataSource {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName("JSONDataSource");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
// 针对json文件,创建DataFrame(针对json文件创建DataFrame)
DataFrame studentScoresDF = sqlContext.read().json(
"hdfs://spark1:9000/spark-study/students.json");
// 针对学生成绩信息的DataFrame,注册临时表,查询分数大于80分的学生的姓名
// (注册临时表,针对临时表执行sql语句)
studentScoresDF.registerTempTable("student_scores");
DataFrame goodStudentScoresDF = sqlContext.sql(
"select name,score from student_scores where score>=80");
// (将DataFrame转换为rdd,执行transformation操作)
List<String> goodStudentNames = goodStudentScoresDF.javaRDD().map(
new Function<Row, String>() {
private static final long serialVersionUID = 1L;
@Override
public String call(Row row) throws Exception {
return row.getString(0);
}
}).collect();
// 然后针对JavaRDD<String>,创建DataFrame
// (针对包含json串的JavaRDD,创建DataFrame)
List<String> studentInfoJSONs = new ArrayList<String>();
studentInfoJSONs.add("{\"name\":\"Leo\", \"age\":18}");
studentInfoJSONs.add("{\"name\":\"Marry\", \"age\":17}");
studentInfoJSONs.add("{\"name\":\"Jack\", \"age\":19}");
JavaRDD<String> studentInfoJSONsRDD = sc.parallelize(studentInfoJSONs);
DataFrame studentInfosDF = sqlContext.read().json(studentInfoJSONsRDD);
// 针对学生基本信息DataFrame,注册临时表,然后查询分数大于80分的学生的基本信息
studentInfosDF.registerTempTable("student_infos");
String sql = "select name,age from student_infos where name in (";
for(int i = 0; i < goodStudentNames.size(); i++) {
sql += "'" + goodStudentNames.get(i) + "'";
if(i < goodStudentNames.size() - 1) {
sql += ",";
}
}
sql += ")";
DataFrame goodStudentInfosDF = sqlContext.sql(sql);
// 然后将两份数据的DataFrame,转换为JavaPairRDD,执行join transformation
// (将DataFrame转换为JavaRDD,再map为JavaPairRDD,然后进行join)
JavaPairRDD<String, Tuple2<Integer, Integer>> goodStudentsRDD =
goodStudentScoresDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.getLong(1))));
}
}).join(goodStudentInfosDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0),
Integer.valueOf(String.valueOf(row.getLong(1))));
}
}));
// 然后将封装在RDD中的好学生的全部信息,转换为一个JavaRDD<Row>的格式
// (将JavaRDD,转换为DataFrame)
JavaRDD<Row> goodStudentRowsRDD = goodStudentsRDD.map(
new Function<Tuple2<String,Tuple2<Integer,Integer>>, Row>() {
private static final long serialVersionUID = 1L;
@Override
public Row call(
Tuple2<String, Tuple2<Integer, Integer>> tuple)
throws Exception {
return RowFactory.create(tuple._1, tuple._2._1, tuple._2._2);
}
});
// 创建一份元数据,将JavaRDD<Row>转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name", DataTypes.StringType, true));
structFields.add(DataTypes.createStructField("score", DataTypes.IntegerType, true));
structFields.add(DataTypes.createStructField("age", DataTypes.IntegerType, true));
StructType structType = DataTypes.createStructType(structFields);
DataFrame goodStudentsDF = sqlContext.createDataFrame(goodStudentRowsRDD, structType);
// 将好学生的全部信息保存到一个json文件中去
// (将DataFrame中的数据保存到外部的json文件中去)
goodStudentsDF.write().format("json").save("hdfs://spark1:9000/spark-study/good-students");
}
}