MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。
spark的特点
1. 快速
与 Hadoop 的 MapReduce 相比, Spark 基于内存的运算是 MapReduce 的 100 倍.基于硬盘的运算也要快 10 倍以上.
Spark 实现了高效的 DAG 执行引擎, 可以通过基于内存来高效处理数据流
2. 易用
Spark 支持 Scala, Java, Python, R 和 SQL 脚本, 并提供了超过 80 种高性能的算法, 非常容易创建并行 App
而且 Spark 支持交互式的 Python 和 Scala 的 shell, 这意味着可以非常方便地在这些 shell 中使用 Spark 集群来验证解决问题的方法, 而不是像以前一样 需要打包, 上传集群, 验证等. 这对于原型开发非常重要.
3. 通用
Spark 结合了SQL, Streaming和复杂分析.
Spark 提供了大量的类库, 包括 SQL 和 DataFrames, 机器学习(MLlib), 图计算(GraphicX), 实时流处理(Spark Streaming) .
可以把这些类库无缝的柔和在一个 App 中.
减少了开发和维护的人力成本以及部署平台的物力成本.
4. 可融合性
Spark 可以非常方便的与其他开源产品进行融合.
比如, Spark 可以使用 Hadoop 的 YARN 和 Appache Mesos 作为它的资源管理和调度器, 并且可以处理所有 Hadoop 支持的数据, 包括 HDFS, HBase等.
Spark 内置模块介绍
集群管理器(Cluster Manager)
Spark 设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计算。
为了实现这样的要求,同时获得最大灵活性,Spark 支持在各种集群管理器(Cluster Manager)上运行,目前 Spark 支持 3 种集群管理器:
(1)Hadoop YARN(在国内使用最广泛)
(2)Apache Mesos(国内使用较少, 国外使用较多)
(3)Standalone(Spark 自带的资源调度器, 需要在集群中的每台节点上配置 Spark)
SparkCore
实现了 Spark 的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。SparkCore 中还包含了对弹性分布式数据集(Resilient Distributed DataSet,简称RDD)的API定义。
Spark SQL
是 Spark 用来操作结构化数据的程序包。通过SparkSql,我们可以使用 SQL或者Apache Hive 版本的 SQL 方言(HQL)来查询数据。Spark SQL 支持多种数据源,比如 Hive 表、Parquet 以及 JSON 等。
Spark Streaming
是 Spark 提供的对实时数据进行流式计算的组件。提供了用来操作数据流的 API,并且与 Spark Core 中的 RDD API 高度对应。
Spark MLlib
提供常见的机器学习 (ML) 功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据导入等额外的支持功能。
Spark VS Hadoop
Spark 中的Spark SQL 、SparkStreaming 、MLLib 、GraphX 、R 五大子框架和库之间可以无缝地共享数据和操作, 这不仅打造了Spark 在当今大数据计算领域其他计算框架都无可匹敌的优势, 而且使得Spark 正在加速成为大数据处理中心首选通用计算平台。
尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop,Spark主要用于替代Hadoop中的MapReduce计算模型。存储依然可以使用HDFS,但是中间结果可以存放在内存中;调度可以使用Spark内置的,也可以使用更成熟的调度系统YARN等。
实际上,Spark已经很好地融入了Hadoop生态圈,并成为其中的重要一员,它可以借助于YARN实现资源调度管理,借助于HDFS实现分布式存储。
此外,Hadoop可以使用廉价的、异构的机器来做分布式存储与计算,但是,Spark对硬件的要求稍高一些,对内存与CPU有一定的要求。