一、RocketMQ集群架构
刚才的演示中,我们已经体验到了RocketMQ是如何工作的。这样,我们回头看RocketMQ的集群架构,就能够有更全面的理解了。
二、RocketMQ集群中的各个角色
一个完整的RocketMQ集群中,有如下几个角色
- Producer:消息的发送者;举例:发信者
- Consumer:消息接收者;举例:收信者
- Broker:暂存和传输消息;举例:邮局
- NameServer:管理Broker;举例:各个邮局的管理机构
- Topic:区分消息的种类;一个发送者可以发送消息给一个或者多个Topic;一个消息的接收者可以订阅一个或者多个Topic消息
我们之前的测试案例中,Topic是什么?topic=’TopicTest’
现在你能看懂我们之前在broker.conf中添加的autoCreateTopicEnable=true这个属性的用处了吗?
- Message Queue:相当于是Topic的分区;用于并行发送和接收消息
在我们之前的测试案例中,一个queueId就代表了一个MessageQueue。有哪些queueId? 0,1,2,3四个MessageQueue,你都找到了吗?
三、RocketMQ集群搭建
1、机器环境
准备三台机,用root账号分别配置一下hosts。
vi /etc/hosts,添加以下内容
192.168.0.72 worker1
192.168.0.166 worker2
192.168.0.200 worker3
这里特意不把每个机器的机器名定义得太过规范,比如master slave这样的,有助于更理解各项配置。
2、创建用户
useradd oper
passwd oper (密码输入 azhi2021888)
3、系统配置
免密登录(这一步非必配)
su切换oper用户,在worker1上 生成key
ssh-kengen
然后分发给其他机器
ssh-copy-id worker1
ssh-copy-id worker2
ssh-copy-id worker3
这样就可以在worker1上直接ssh 或者scp到另外的机器,不需要输密码了。
关闭防火墙
systemctl stop firewalld.service firewall-cmd —state
4、安装Jdk1.8
给oper创建/app目录
上传jdk的tar包
修改~/.bash_profile,配置环境变量。source生效。
export JAVA_HOME=/app/jdk1.8/
5、安装RocketMQ
上传tar包,直接解压。然后配置环境变量
export ROCKETMQ_HOME=/app/rocketmq/rocketmq-all-4.7.1-bin-release
RocketMQ在4.5版本之前都不支持master宕机后slave自动切换。在4.5版本后,增加了基于Dleger实现的主从切换。这里用的目前最新的4.7.1版本
6、配置RocketMQ集群
我们为了便于观察,这次搭建一个2主2从异步刷盘的集群,所以我们会使用conf/2m-2s-async下的配置文件,实际项目中,为了达到高可用,一般会使用dleger。预备设计的集群情况如下:
机器名 | nemaeServer节点部署 | broker节点部署 |
---|---|---|
worker1 | nameserver | |
worker2 | nameserver | broker-a, broker-b-s |
worker3 | nameserver | broker-b,broker-a-s |
所以修改的配置文件是进入rocketmq的config目录下修改2m-2s-async的配置文件。—只需要配置broker.conf。
在rocketmq的config目录下可以看到rocketmq建议的各种配置方式:
- 2m-2s-async: 2主2从异步刷盘(吞吐量较大,但是消息可能丢失),
- 2m-2s-sync:2主2从同步刷盘(吞吐量会下降,但是消息更安全),
- 2m-noslave:2主无从(单点故障),然后还可以直接配置broker.conf,进行单点环境配置。
- 而dleger就是用来实现主从切换的。集群中的节点会基于Raft协议随机选举出一个leader,其他的就都是follower。通常正式环境都会采用这种方式来搭建集群。
1、配置第一组broker-a
在worker2上先配置borker-a的master节点。先配置2m-2s-async/broker-a.properties
#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=10911
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/app/rocketmq/store
#commitLog 存储路径
storePathCommitLog=/app/rocketmq/store/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/app/rocketmq/store/consumequeue
#消息索引存储路径
storePathIndex=/app/rocketmq/store/index
#checkpoint 文件存储路径
storeCheckpoint=/app/rocketmq/store/checkpoint
#abort 文件存储路径
abortFile=/app/rocketmq/store/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=ASYNC_MASTER
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128
该节点对应的从节点在worker3上。修改2m-2s-async/broker-a-s.properties 只需要修改brokerId和brokerRole
#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=11011
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/app/rocketmq/storeSlave
#commitLog 存储路径
storePathCommitLog=/app/rocketmq/storeSlave/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/app/rocketmq/storeSlave/consumequeue
#消息索引存储路径
storePathIndex=/app/rocketmq/storeSlave/index
#checkpoint 文件存储路径
storeCheckpoint=/app/rocketmq/storeSlave/checkpoint
#abort 文件存储路径
abortFile=/app/rocketmq/storeSlave/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=SLAVE
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128
2、配置第二组Broker-b
这一组broker的主节点在worker3上,所以需要配置worker3上的config/2m-2s-async/broker-b.properties
#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=10911
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/app/rocketmq/store
#commitLog 存储路径
storePathCommitLog=/app/rocketmq/store/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/app/rocketmq/store/consumequeue
#消息索引存储路径
storePathIndex=/app/rocketmq/store/index
#checkpoint 文件存储路径
storeCheckpoint=/app/rocketmq/store/checkpoint
#abort 文件存储路径
abortFile=/app/rocketmq/store/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=ASYNC_MASTER
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128
然后他对应的slave在worker2上,修改work2上的 conf/2m-2s-async/broker-b-s.properties
#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=11011
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/app/rocketmq/storeSlave
#commitLog 存储路径
storePathCommitLog=/app/rocketmq/storeSlave/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/app/rocketmq/storeSlave/consumequeue
#消息索引存储路径
storePathIndex=/app/rocketmq/storeSlave/index
#checkpoint 文件存储路径
storeCheckpoint=/app/rocketmq/storeSlave/checkpoint
#abort 文件存储路径
abortFile=/app/rocketmq/storeSlave/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=SLAVE
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128
这样broker就配置完成了。
需要注意的配置项:1、同一机器上两个实例的store目录不能相同,否则会报错 Lock failed,MQ already started
2、同一机器上两个实例的listenPort也不能相同。否则会报端口占用的错
nameserver不需要进行配置,直接启动就行。这也看出nameserver是无状态的。
3、其他的配置项参见《RcoketMQ全部配置表.pdf》
7、启动RocketMQ
启动就比较简单了,直接调用bin目录下的脚本就行。只是启动之前要注意看下他们的JVM内存配置,默认的配置都比较高。
1、先启动nameServer。
修改三个节点上的bin/runserver.sh,调整里面的jvm内存配置。找到下面这一行调整下内存
JAVA_OPT=”${JAVA_OPT} -server -Xms512m -Xmx512m -Xmn256m -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m”
直接在三个节点上启动nameServer。
nohup bin/mqnamesrv &
启动完成后,在nohup.out里看到这一条关键日志就是启动成功了。
Java HotSpot(TM) 64-Bit Server VM warning: Using the DefNew young collector with the CMS collector is deprecated and will likely be removed in a future release Java HotSpot(TM) 64-Bit Server VM warning: UseCMSCompactAtFullCollection is deprecated and will likely be removed in a future release. The Name Server boot success. serializeType=JSON
使用jps指令可以看到一个NamesrvStartup进程。
这里也看到,RocketMQ在runserver.sh中是使用的CMS垃圾回收期,而在runbroker.sh中使用的是G1垃圾回收期。
2、再启动broker
启动broker是使用的mqbroker指令,只是注意启动broker时需要通过-c 指定对应的配置文件。
在worker2上启动broker-a的master节点和broker-b的slave节点
nohup ./mqbroker -c ../conf/2m-2s-async/broker-a.properties &
nohup ./mqbroker -c ../conf/2m-2s-async/broker-b-s.properties &
在work3上启动broker-b的master节点和broker-a的slave节点
nohup ./mqbroker -c ../conf/2m-2s-async/broker-b.properties &
nohup ./mqbroker -c ../conf/2m-2s-async/broker-a-s.properties &
启动slave时,如果遇到报错 Lock failed,MQ already started ,那是因为有多个实例共用了同一个storePath造成的,这时就需要调整store的路径。
3、启动状态检查
使用jps指令,能看到一个NameSrvStartup进程和两个BrokerStartup进程。
nohup.out中也有启动成功的日志。
对应的日志文件:
# 查看nameServer日志 tail -500f ~/logs/rocketmqlogs/namesrv.log # 查看broker日志 tail -500f ~/logs/rocketmqlogs/broker.log
4、测试mqadmin管理工具
RocketMQ的源代码中并没有为我们提供类似于Nacos或者RabbitMQ那样的控制台,只提供了一个mqadmin指令来管理RocketMQ,命令在bin目录下。使用方式是 ./mqadmin {command} {args}
所有指令如下:
Topic相关:
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
updateTopic | 创建更新Topic配置 | -b | Broker 地址,表示 topic 所在 Broker,只支持单台Broker,地址为ip:port |
-c | cluster 名称,表示 topic 所在集群(集群可通过 clusterList 查询) | ||
-h- | 打印帮助 | ||
-n | NameServer服务地址,格式 ip:port | ||
-p | 指定新topic的读写权限( W=2|R=4|WR=6 ) | ||
-r | 可读队列数(默认为 8) | ||
-w | 可写队列数(默认为 8) | ||
-t | topic 名称(名称只能使用字符 ^[a-zA-Z0-9_-]+$ ) | ||
deleteTopic | 删除Topic | -c | cluster 名称,表示删除某集群下的某个 topic (集群 可通过 clusterList 查询) |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic 名称(名称只能使用字符 ^[a-zA-Z0-9_-]+$ ) | ||
topicList | 查看 Topic 列表信息 | -h | 打印帮助 |
-c | 不配置-c只返回topic列表,增加-c返回clusterName, topic, consumerGroup信息,即topic的所属集群和订阅关系,没有参数 | ||
-n | NameServer 服务地址,格式 ip:port | ||
topicRoute | 查看 Topic 路由信息 | -t | topic 名称 |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
topicStatus | 查看 Topic 消息队列offset | -t | topic 名称 |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
topicClusterList | 查看 Topic 所在集群列表 | -t | topic 名称 |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
updateTopicPerm | 更新 Topic 读写权限 | -t | topic 名称 |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
-b | Broker 地址,表示 topic 所在 Broker,只支持单台Broker,地址为ip:port | ||
-p | 指定新 topic 的读写权限( W=2|R=4|WR=6 ) | ||
-c | cluster 名称,表示 topic 所在集群(集群可通过 clusterList 查询),-b优先,如果没有-b,则对集群中所有Broker执行命令 | ||
updateOrderConf | 从NameServer上创建、删除、获取特定命名空间的kv配置,目前还未启用 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic,键 | ||
-v | orderConf,值 | ||
-m | method,可选get、put、delete | ||
allocateMQ | 以平均负载算法计算消费者列表负载消息队列的负载结果 | -t | topic 名称 |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
-i | ipList,用逗号分隔,计算这些ip去负载Topic的消息队列 | ||
statsAll | 打印Topic订阅关系、TPS、积累量、24h读写总量等信息 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-a | 是否只打印活跃topic | ||
-t | 指定topic |
集群相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
clusterList | 查看集群信息,集群、BrokerName、BrokerId、TPS等信息 | -m | 打印更多信息 (增加打印出如下信息 #InTotalYest, #OutTotalYest, #InTotalToday ,#OutTotalToday) |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
-i | 打印间隔,单位秒 | ||
clusterRT | 发送消息检测集群各Broker RT。消息发往${BrokerName} Topic。 | -a | amount,每次探测的总数,RT = 总时间 / amount |
-s | 消息大小,单位B | ||
-c | 探测哪个集群 | ||
-p | 是否打印格式化日志,以|分割,默认不打印 | ||
-h | 打印帮助 | ||
-m | 所属机房,打印使用 | ||
-i | 发送间隔,单位秒 | ||
-n | NameServer 服务地址,格式 ip:port |
Broker相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
updateBrokerConfig | 更新 Broker 配置文件,会修改Broker.conf | -b | Broker 地址,格式为ip:port |
-c | cluster 名称 | ||
-k | key 值 | ||
-v | value 值 | ||
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
brokerStatus | 查看 Broker 统计信息、运行状态(你想要的信息几乎都在里面) | -b | Broker 地址,地址为ip:port |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
brokerConsumeStats | Broker中各个消费者的消费情况,按Message Queue维度返回Consume Offset,Broker Offset,Diff,TImestamp等信息 | -b | Broker 地址,地址为ip:port |
-t | 请求超时时间 | ||
-l | diff阈值,超过阈值才打印 | ||
-o | 是否为顺序topic,一般为false | ||
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
getBrokerConfig | 获取Broker配置 | -b | Broker 地址,地址为ip:port |
-n | NameServer 服务地址,格式 ip:port | ||
wipeWritePerm | 从NameServer上清除 Broker写权限 | -b | Broker 地址,地址为ip:port |
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 | ||
cleanExpiredCQ | 清理Broker上过期的Consume Queue,如果手动减少对列数可能产生过期队列 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-b | Broker 地址,地址为ip:port | ||
-c | 集群名称 | ||
cleanUnusedTopic | 清理Broker上不使用的Topic,从内存中释放Topic的Consume Queue,如果手动删除Topic会产生不使用的Topic | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-b | Broker 地址,地址为ip:port | ||
-c | 集群名称 | ||
sendMsgStatus | 向Broker发消息,返回发送状态和RT | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-b | BrokerName,注意不同于Broker地址 | ||
-s | 消息大小,单位B | ||
-c | 发送次数 |
消息相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
queryMsgById | 根据offsetMsgId查询msg,如果使用开源控制台,应使用offsetMsgId,此命令还有其他参数,具体作用请阅读QueryMsgByIdSubCommand。 | -i | msgId |
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
queryMsgByKey | 根据消息 Key 查询消息 | -k | msgKey |
-t | Topic 名称 | ||
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
queryMsgByOffset | 根据 Offset 查询消息 | -b | Broker 名称,(这里需要注意 填写的是 Broker 的名称,不是 Broker 的地址,Broker 名称可以在 clusterList 查到) |
-i | query 队列 id | ||
-o | offset 值 | ||
-t | topic 名称 | ||
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
queryMsgByUniqueKey | 根据msgId查询,msgId不同于offsetMsgId,区别详见常见运维问题。-g,-d配合使用,查到消息后尝试让特定的消费者消费消息并返回消费结果 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-i | uniqe msg id | ||
-g | consumerGroup | ||
-d | clientId | ||
-t | topic名称 | ||
checkMsgSendRT | 检测向topic发消息的RT,功能类似clusterRT | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic名称 | ||
-a | 探测次数 | ||
-s | 消息大小 | ||
sendMessage | 发送一条消息,可以根据配置发往特定Message Queue,或普通发送。 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic名称 | ||
-p | body,消息体 | ||
-k | keys | ||
-c | tags | ||
-b | BrokerName | ||
-i | queueId | ||
consumeMessage | 消费消息。可以根据offset、开始&结束时间戳、消息队列消费消息,配置不同执行不同消费逻辑,详见ConsumeMessageCommand。 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic名称 | ||
-b | BrokerName | ||
-o | 从offset开始消费 | ||
-i | queueId | ||
-g | 消费者分组 | ||
-s | 开始时间戳,格式详见-h | ||
-d | 结束时间戳 | ||
-c | 消费多少条消息 | ||
printMsg | 从Broker消费消息并打印,可选时间段 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic名称 | ||
-c | 字符集,例如UTF-8 | ||
-s | subExpress,过滤表达式 | ||
-b | 开始时间戳,格式参见-h | ||
-e | 结束时间戳 | ||
-d | 是否打印消息体 | ||
printMsgByQueue | 类似printMsg,但指定Message Queue | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-t | topic名称 | ||
-i | queueId | ||
-a | BrokerName | ||
-c | 字符集,例如UTF-8 | ||
-s | subExpress,过滤表达式 | ||
-b | 开始时间戳,格式参见-h | ||
-e | 结束时间戳 | ||
-p | 是否打印消息 | ||
-d | 是否打印消息体 | ||
-f | 是否统计tag数量并打印 | ||
resetOffsetByTime | 按时间戳重置offset,Broker和consumer都会重置 | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-g | 消费者分组 | ||
-t | topic名称 | ||
-s | 重置为此时间戳对应的offset | ||
-f | 是否强制重置,如果false,只支持回溯offset,如果true,不管时间戳对应offset与consumeOffset关系 | ||
-c | 是否重置c++客户端offset |
消费者和消费者组相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
consumerProgress | 查看订阅组消费状态,可以查看具体的client IP的消息积累量 | -g | 消费者所属组名 |
-s | 是否打印client IP | ||
-h | 打印帮助 | ||
-n | NameServer 服务地址,格式 ip:port | ||
consumerStatus | 查看消费者状态,包括同一个分组中是否都是相同的订阅,分析Process Queue是否堆积,返回消费者jstack结果,内容较多,使用者参见ConsumerStatusSubCommand | -h | 打印帮助 |
-n | NameServer 服务地址,格式 ip:port | ||
-g | consumer group | ||
-i | clientId | ||
-s | 是否执行jstack | ||
getConsumerStatus | 获取 Consumer 消费进度 | -g | 消费者所属组名 |
-t | 查询主题 | ||
-i | Consumer 客户端 ip | ||
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 | ||
updateSubGroup | 更新或创建订阅关系 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-b | Broker地址 | ||
-c | 集群名称 | ||
-g | 消费者分组名称 | ||
-s | 分组是否允许消费 | ||
-m | 是否从最小offset开始消费 | ||
-d | 是否是广播模式 | ||
-q | 重试队列数量 | ||
-r | 最大重试次数 | ||
-i | 当slaveReadEnable开启时有效,且还未达到从slave消费时建议从哪个BrokerId消费,可以配置备机id,主动从备机消费 | ||
-w | 如果Broker建议从slave消费,配置决定从哪个slave消费,配置BrokerId,例如1 | ||
-a | 当消费者数量变化时是否通知其他消费者负载均衡 | ||
deleteSubGroup | 从Broker删除订阅关系 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-b | Broker地址 | ||
-c | 集群名称 | ||
-g | 消费者分组名称 | ||
cloneGroupOffset | 在目标群组中使用源群组的offset | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-s | 源消费者组 | ||
-d | 目标消费者组 | ||
-t | topic名称 | ||
-o | 暂未使用 |
连接相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
consumerConnec tion | 查询 Consumer 的网络连接 | -g | 消费者所属组名 |
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 | ||
producerConnec tion | 查询 Producer 的网络连接 | -g | 生产者所属组名 |
-t | 主题名称 | ||
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 |
NameServer相关
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
updateKvConfig | 更新NameServer的kv配置,目前还未使用 | -s | 命名空间 |
-k | key | ||
-v | value | ||
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 | ||
deleteKvConfig | 删除NameServer的kv配置 | -s | 命名空间 |
-k | key | ||
-n | NameServer 服务地址,格式 ip:port | ||
-h | 打印帮助 | ||
getNamesrvConfig | 获取NameServer配置 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
updateNamesrvConfig | 修改NameServer配置 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 | ||
-k | key | ||
-v | value |
其他
名称 | 含义 | 命令选项 | 说明 |
---|---|---|---|
startMonitoring | 开启监控进程,监控消息误删、重试队列消息数等 | -n | NameServer 服务地址,格式 ip:port |
-h | 打印帮助 |
注意:
1、几乎所有指令都需要通过-n参数配置nameServer地址,格式为ip:port
2、几乎所有执行都可以通过-h参数获得帮助
3、当既有Broker地址(-b)又有集群名称clustername(-c)配合项,则优先以Broker地址执行指令。如果不配置Broker地址,则对集群中所有主机执行指令。
5、命令行快速验证
在RocketMQ的安装包中,提供了一个tools.sh工具可以用来在命令行快速验证RocketMQ服务。我们在worker2上进入RocketMQ的安装目录:
发送消息:默认会发1000条消息
bin/tools.sh org.apache.rocketmq.example.quickstart.Producer
接收消息:
bin/tools.sh org.apache.rocketmq.example.quickstart.Consumer
注意,这是官方提供的Demo,但是官方的源码中,这两个类都是没有指定nameServer的,所以运行会有点问题。要指定NameServer地址,可以配置一个环境变量NAMESRV_ADDR,这样默认会读取这个NameServer地址。可以配到.bash_profile里或者直接临时指定。
export NAMESRV_ADDR='worker1:9876;worker2:9876;worker3:9876'
然后就可以正常执行了。
这个NameServer地址的读取方式见源码中org.apache.rocketmq.common.utils.NameServerAddressUtils
public static String getNameServerAddresses() {
return System.getProperty("rocketmq.namesrv.addr", System.getenv("NAMESRV_ADDR"));
}
这个方法就是在DefaultMQProducer中默认的设置NameServer地址的方式,这个rokcetmq.namesrv.addr属性可以在java中使用System.setproperties指定,也可以在SpringBoot中配到配置文件里。
这个tools.sh就封装了一个简单的运行RocketMQ的环境,可以运行源码中的其他示例,然后自己的例子也可以放到RocketMQ的lib目录下去执行。
8、搭建管理控制台
RocketMQ源代码中并没有提供控制台,但是有一个Rocket的社区扩展项目中提供了一个控制台,地址: https://github.com/apache/rocketmq-externals
下载下来后,进入其中的rocket-console目录,使用maven进行编译
mvn clean package -Dmaven.test.skip=true
编译完成后,获取target下的jar包,就可以直接执行。但是这个时候要注意,在这个项目的application.properties中需要指定nameserver的地址。默认这个属性是空的。
那我们可以在jar包的当前目录下增加一个application.properties文件,覆盖jar包中默认的一个属性:
rocketmq.config.namesrvAddr=worker1:9876;worker2:9876;worker3:9876
然后执行:
java -jar rocketmq-console-ng-1.0.1.jar
启动完成后,可以访问 http://192.168.232.128:8080看到管理页面
在管理页面的右上角可以选择语言。
Dleger高可用集群搭建
通过上面这种方式,我们搭建了一个主从结构的RocketMQ集群,但是我们要注意,这种主从结构是只做数据备份,没有容灾功能的。也就是说当一个master节点挂了后,slave节点是无法切换成master节点继续提供服务的。注意这个集群至少要是3台,允许少于一半的节点发生故障。
如果slave挂了,对集群的影响不会很大,因为slave只是做数据备份的。但是影响也是会有的,例如,当消费者要拉取的数据量比较大时,RocketMQ有一定的机制会优先保证Master节点的性能,只让Master节点返回一小部分数据,而让其他部分的数据从slave节点去拉取。
另外,需要注意,Dleger会有他自己的CommitLog机制,也就是说,使用主从集群累计下来的消息,是无法转移到Dleger集群中的。
而如果要进行高可用的容灾备份,需要采用Dledger的方式来搭建高可用集群。注意,这个Dledger需要在RocketMQ4.5以后的版本才支持,我们使用的4.7.1版本已经默认集成了dledger。
搭建方法
要搭建高可用的Broker集群,我们只需要配置conf/dleger下的配置文件就行。
这种模式是基于Raft协议的,是一个类似于Zookeeper的paxos协议的选举协议,也是会在集群中随机选举出一个leader,其他的就是follower。只是他选举的过程跟paxos有点不同。Raft协议基于随机休眠机制的,选举过程会比paxos相对慢一点。
首先:我们同样是需要修改runserver.sh和runbroker.sh,对JVM内存进行定制。
然后:我们需要修改conf/dleger下的配置文件。 跟dleger相关的几个配置项如下:
name | 含义 | 举例 |
---|---|---|
enableDLegerCommitLog | 是否启动 DLedger | true |
dLegerGroup | DLedger Raft Group的名字,建议和 brokerName 保持一致 | RaftNode00 |
dLegerPeers | DLedger Group 内各节点的端口信息,同一个 Group 内的各个节点配置必须要保证一致 | n0-127.0.0.1:40911;n1-127.0.0.1:40912;n2-127.0.0.1:40913 |
dLegerSelfId | 节点 id, 必须属于 dLegerPeers 中的一个;同 Group 内各个节点要唯一 | n0 |
sendMessageThreadPoolNums | 发送线程个数,建议配置成 Cpu 核数 | 16 |
配置完后,同样是使用 nohup bin/mqbroker -c $conf_name & 的方式指定实例文件。
在bin/dleger下有个fast-try.sh,这个脚本是在本地启动三个RocketMQ实例,搭建一个高可用的集群,读取的就是conf/dleger下的broker-no.conf,broker-n1.conf和broker-n2.conf。使用这个脚本同样要注意定制下JVM内存,他给每个实例默认定制的是1G内存,虚拟机肯定是不够的。
这种单机三实例的集群搭建完成后,可以使用 bin/mqadmin clusterList -n worker1.conf的方式查看集群状态。
单机状态下一般一次主从切换需要大概10S的时间。
9、调整系统参数
到这里,我们的整个RocketMQ的服务就搭建完成了。但是在实际使用时,我们说RocketMQ的吞吐量、性能都很高,那要发挥RocketMQ的高性能,还需要对RocketMQ以及服务器的性能进行定制
1、配置RocketMQ的JVM内存大小:
之前提到过,在runserver.sh中需要定制nameserver的内存大小,在runbroker.sh中需要定制broker的内存大小。这些默认的配置可以认为都是经过检验的最优化配置,但是在实际情况中都还需要根据服务器的实际情况进行调整。这里以runbroker.sh中对G1GC的配置举例,在runbroker.sh中的关键配置:
JAVAOPT=”${JAVA_OPT} -XX:+UseG1GC -XX:G1HeapRegionSize=16m -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -XX:SoftRefLRUPolicyMSPerMB=0” JAVA_OPT=”${JAVA_OPT} -verbose:gc -Xloggc:${GC_LOG_DIR}/rmq_broker_gc%p_%t.log -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintAdaptiveSizePolicy” JAVA_OPT=”${JAVA_OPT} -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=30m”
-XX:+UseG1GC: 使用G1垃圾回收器, -XX:G1HeapRegionSize=16m 将G1的region块大小设为16M,-XX:G1ReservePercent:在G1的老年代中预留25%空闲内存,这个默认值是10%,RocketMQ把这个参数调大了。-XX:InitiatingHeapOccupancyPercent=30:当堆内存的使用率达到30%之后就会启动G1垃圾回收器尝试回收垃圾,默认值是45%,RocketMQ把这个参数调小了,也就是提高了GC的频率,但是避免了垃圾对象过多,一次垃圾回收时间太长的问题。
然后,后面定制了GC的日志文件,确定GC日志文件的地址、打印的内容以及控制每个日志文件的大小为30M并且只保留5个文件。这些在进行性能检验时,是相当重要的参考内容。
2、RocketMQ的其他一些核心参数
例如在conf/dleger/broker-n0.conf中有一个参数:sendMessageThreadPoolNums=16。这一个参数是表明RocketMQ内部用来发送消息的线程池的线程数量是16个,其实这个参数可以根据机器的CPU核心数进行适当调整,例如如果你的机器核心数超过16个,就可以把这个参数适当调大。
3、Linux内核参数定制
我们在部署RocketMQ的时候,还需要对Linux内核参数进行一定的定制。例如
- ulimit,需要进行大量的网络通信和磁盘IO。
- vm.extra_free_kbytes,告诉VM在后台回收(kswapd)启动的阈值与直接回收(通过分配进程)的阈值之间保留额外的可用内存。RocketMQ使用此参数来避免内存分配中的长延迟。(与具体内核版本相关)
- vm.min_free_kbytes,如果将其设置为低于1024KB,将会巧妙的将系统破坏,并且系统在高负载下容易出现死锁。
- vm.max_map_count,限制一个进程可能具有的最大内存映射区域数。RocketMQ将使用mmap加载CommitLog和ConsumeQueue,因此建议将为此参数设置较大的值。
- vm.swappiness,定义内核交换内存页面的积极程度。较高的值会增加攻击性,较低的值会减少交换量。建议将值设置为10来避免交换延迟。
- File descriptor limits,RocketMQ需要为文件(CommitLog和ConsumeQueue)和网络连接打开文件描述符。我们建议设置文件描述符的值为655350。
这些参数在CentOS7中的配置文件都在 /proc/sys/vm目录下。
另外,RocketMQ的bin目录下有个os.sh里面设置了RocketMQ建议的系统内核参数,可以根据情况进行调整。
四、RocketMQ的其他参考资料
还记得我们之前把RocketMQ的源代码也下载下来了吗?我们现在不需要去看源代码,但是在源码中有个docs目录,里面有非常有用的资料。例如,在他的docs/cn/architecture.md文档中,有对RocketMQ架构的更详细的介绍。这里面的内容就不再搬运了,我们直接看看把。
五、总结
到这里,我们可以完整的搭建RocketMQ,并进行简单的使用了。
首先,我们要对MQ的优缺点以及适用场景开始要有逐渐清晰的概念。成熟的MQ产品上手使用都很简单,所以,能结合项目场景完整落地,这才是考验程序员功力的地方。而这个功力的要点就在于对异步消息驱动场景的理解深度。这一部分的学习最好能够结合kafka、RabbitMQ和RocketMQ这几个产品一起进行横向对比。
然后,我们要对RocketMQ整体的产品架构以及应用生态有个大致的了解。商业版本的RocketMQ提供了购买即用的高可用特性,并且功能也比开源版本略有改进。而在RocketMQ的开源版本之外,围绕RocketMQ的扩展生态包括管理控制台,大都整合在了rocketmq-externals社区项目中。关于RocketMQ的周边生态,其实跟kafka和RabbitMQ还是有差距的,但是RocketMQ相比这两个产品,不管是开发语言还是架构思维,对我们都更为友好,而且周边生态发展也有后发优势,所以对RocketMQ要抱着学习,改进的态度,从点到面横向拓宽技术视野。