1. 主流消息队列都是如何存储消息的?
现代的消息队列它本质上是一个分布式的存储系统。那决定一个存储系统的性能好坏,最主要的因素是什么?就是它的存储结构。
很多大厂在面试的时候,特别喜欢问各种二叉树、红黑树和哈希表这些你感觉平时都用不到的知识,原因是什么?其实,无论是我们开发的应用程序,还是一些开源的数据库系统,在数据量达到一个量级之上的时候,决定你系统整体性能的往往就是,你用什么样的数据结构来存储这些数据。而大部分数据库,它最基础的存储结构不是树就是哈希表。
即使你不去开发一个数据库,在设计一个超大规模的数据存储的时候,你也需要掌握各种数据库的存储结构,才能选择一个适合你的业务数据的数据库产品。所以,掌握这些最基础的数据结构相关的知识,是很有必要的,不仅仅是为了应付面试。
在所有的存储系统中,消息队列的存储可能是最简单的。每个主题包含若干个分区,每个分区其实就是一个 WAL(Write Ahead Log),写入的时候只能尾部追加,不允许删除、修改。读取的时候,根据一个索引序号进行查询,然后连续顺序往下读,所以基于顺序读写的这些消息中间件一般读写效率都很高。
接下来我们看看,几种主流的消息队列都是如何设计它们的存储结构的。
2.先来看 Kafka
Kafka 的存储以 Partition 为单位,每个 Partition 包含一组消息文件(Segment file)和一组索引文件(Index),并且消息文件和索引文件一一对应,具有相同的文件名(但文件扩展名不一样),文件名就是这个文件中第一条消息的索引序号。
每个索引中保存索引序号(也就是这条消息是这个分区中的第几条消息)和对应的消息在消息文件中的绝对位置。在索引的设计上,Kafka 采用的是稀疏索引,为了节省存储空间,它不会为每一条消息都创建索引,而是每隔几条消息创建一条索引。
写入消息的时候非常简单,就是在消息文件尾部连续追加写入,一个文件写满了再写下一个文件。查找消息时,首先根据文件名找到所在的索引文件,然后用二分法遍历索引文件内的索引,在里面找到离目标消息最近的索引,再去消息文件中,找到这条最近的索引指向的消息位置,从这个位置开始顺序遍历消息文件,找到目标消息。
可以看到,寻址过程还是需要一定时间的。一旦找到消息位置后,就可以批量顺序读取,不必每条消息都要进行一次寻址。
3.再来看一下 RocketMQ
RocketMQ 的存储以 Broker 为单位。它的存储也是分为消息文件和索引文件,但是在 RocketMQ 中,每个 Broker 只有一组消息文件,它把在这个 Broker 上的所有主题的消息都存在这一组消息文件中。索引文件和 Kafka 一样,是按照主题和队列分别建立的,每个队列对应一组索引文件,这组索引文件在 RocketMQ 中称为 ConsumerQueue。RocketMQ 中的索引是定长稠密索引,它为每一条消息都建立索引,每个索引的长度(注意不是消息长度)是固定的 20 个字节。
写入消息的时候,Broker 上所有主题、所有队列的消息按照自然顺序追加写入到同一个消息文件中,一个文件写满了再写下一个文件。查找消息的时候,可以直接根据队列的消息序号,计算出索引的全局位置(索引序号 x 索引固定长度 20),然后直接读取这条索引,再根据索引中记录的消息的全局位置,找到消息。可以看到,这里两次寻址都是绝对位置寻址,比 Kafka 的查找是要快的。
对比这两种存储结构,你可以看到它们有很多共通的地方,都是采用消息文件 + 索引文件的存储方式,索引文件的名字都是第一条消息的索引序号,索引中记录了消息的位置等等。
在消息文件的存储粒度上,Kafka 以分区为单位,粒度更细,优点是更加灵活,很容易进行数据迁移和扩容。RocketMQ 以 Broker 为单位,较粗的粒度牺牲了灵活性,带来的好处是,在写入的时候,同时写入的文件更少,有更好的批量(不同主题和分区的数据可以组成一批一起写入),更多的顺序写入,尤其是在 Broker 上有很多主题和分区的情况下,有更好的写入性能。
索引设计上,RocketMQ 和 Kafka 分别采用了稠密索引和稀疏索引,稠密索引需要更多的存储空间,但查找性能更好,稀疏索引能节省一些存储空间,代价是牺牲了查找性能。
可以看到,两种消息队列在存储设计上,有不同的选择。大多数场景下,这两种存储设计的差异其实并不明显,都可以满足需求。但是在某些极限场景下,依然会体现出它们设计的差异。比如,在一个 Broker 上有上千个活动主题的情况下,RocketMQ 的写入性能就会体现出优势。再比如,如果我们的消息都是几个、十几个字节的小消息,但是消息的数量很多,这时候 Kafka 的稀疏索引设计就能节省非常多的存储空间。