给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。
示例 1:
输入:nums = [1,1,1], k = 2
输出:2
示例 2:
输入:nums = [1,2,3], k = 3
输出:2
常规算法:
public int subarraySum(int[] nums, int k) {int count = 0;// 外层循环控制子数组最大长度for (int i = 0; i < nums.length; i++) {int sum = 0;// 内层循环计算是否存在子数组的和满足要求for (int j = i; j < nums.length; j++) {sum += nums[j];if (sum == k) {count++;}}}return count;}
子数组类型问题还可以利用前缀和的算法思想
public int subarraySum(int[] nums, int k) {// 前缀和数组int[] sums = new int[nums.length+1];for (int i = 0; i < nums.length; i++) {// 这里需要注意,前缀和是从 presum[1]开始填充的sums[i + 1] = sums[i] + nums[i];}// 统计 sums 中两个元素的差 等于 k 的次数int count = 0;for (int i = 0; i < sums.length - 1; i++) {for (int j = i; j < sums.length - 1; j++) {if (sums[j + 1] - sums[i] == k) {count++;}}}return count;}
但是此写法和常规遍历并没有更优,返而空间复杂度上升了,但是可以利用哈希进行优化(只是不容易想到)
可以参考 1. 两数之和
常规双层循环:
public int[] towSum(int[] nums, int target) {for(int i = 0; i < nums.length; i++) {for(int j = 0; j < nums.length; j++) {if (i != j && nums[i] + nums[j] == target) {return new int[] {i, j};}}}return new int[]{};}
哈希优化双层循环:
public int[] towSum(int[] nums, int target) {Map<Integer, Integer> map = new HashMap<>();for(int i = 0; i < nums.length; i++) {map.put(nums[i], i);}for(int i = 0; i < nums.length; i++) {int diff = target - nums[i];if (map.containsKey(diff) && map.get(diff) != i) {return new int[] {i, map.get(diff)};}}return new int[]{};}
哈希再优化:
public int[] towSum(int[] nums, int target) {Map<Integer, Integer> map = new HashMap<>();for(int i = 0; i < nums.length; i++) {int diff = target - nums[i];if (map.containsKey(diff) && map.get(diff) != i) {return new int[] {i, map.get(diff)};}map.put(nums[i], i);}return new int[]{};}
前缀和的哈希优化:
public int subarraySum(int[] nums, int k) {if (nums.length == 0) {return 0;}int count = 0;HashMap<Integer,Integer> map = new HashMap<>();// 细节,这里需要预存前缀和为 0 的情况map.put(0, 1);int presum = 0;for (int x : nums) {presum += x;// 当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。if (map.containsKey(presum - k)) {// 累加次数count += map.get(presum - k);}// 更新map.put(presum, map.getOrDefault(presum,0) + 1);}return count;}
