高速外部时钟信号 (HSE)
当使用有源晶振时,时钟从 OSC_IN 引脚进入,OSC_OUT 引脚悬空,
当选用无源晶振时,时钟从OSC_IN 和 OSC_OUT 进入,并且要配谐振电容。
高速内部时钟信号(HSI)
HSI 时钟信号由内部 16 MHz RC 振荡器生成,可直接用作系统时钟,或者用作 PLL 输入。
PLL
PLL 的主要作用是对时钟进行倍频,然后把时钟输出到各个功能部件。PLL 有两个,一个是主 PLL,另外一个是专用的 PLLI2S,他们均由 HSE 或者 HSI 提供时钟输入信号。
主 PLL (PLL) 由 HSE 或 HSI 振荡器提供时钟信号,并具有两个不同的输出时钟:
- 第一个输出用于生成高速系统时钟(最高达 168 MHz)
- 第二个输出用于生成 USB OTG FS 的时钟 (48 MHz)、随机数发生器的时钟 (48 MHz) 和 SDIO 时钟 (48 MHz)。
专用 PLL (PLLI2S) 用于生成精确时钟,从而在 I2S 接口实现高品质音频性能。
低速外部时钟信号(LSE)
LSE 晶振是 32.768 kHz 低速外部 (LSE) 晶振或陶瓷谐振器,可作为实时时钟外设 (RTC) 的时钟源来提供时钟/日历或其它定时功能,具有功耗低且精度高的优点。
低速内部时钟信号(LSI)
LSI RC 可作为低功耗时钟源在停机和待机模式下保持运行,供独立看门狗 (IWDG) 和自动唤醒单元 (AWU) 使用。时钟频率在 32 kHz 左右。
时钟的输出功能
RCC
设置系统时钟 SYSCLK、设置 AHB 分频因子(决定 HCLK 等于多少)、设置 APB2 分频因子(决定 PCLK2 等于多少)、设置 APB1 分频因子(决定 PCLK1 等于多少)、设置各个外设的分频因子;控制 AHB、APB2 和 APB1 这三条总线时钟的开启、控制每个外设的时钟的开启。对于 SYSCLK、HCLK、PCLK2、PCLK1 这四个时钟的配置一般是:HCLK = SYSCLK=PLLCLK ,PCLK2=HCLK/2 ,PCLK1=HCLK/4 。
HCLK = SYSCLK=PLLCLK = 168M(F407)
PCLK2=HCLK/2 = 84M(F407)
PCLK1=HCLK/4 = 42M(F407)
系统时钟 (SYSCLK) 选择
系统时钟来源可以是:HSI、PLLCLK、HSE,具体的由时钟配置寄存器 RCC_CFGR 的 SW 位配置。
在系统复位后,默认系统时钟为 HSI。在直接使用 HSI 或者通过 PLL 使用时钟源来作为系统时钟时,该时钟源无法停止。
只有在目标时钟源已就绪时(时钟在启动延迟或 PLL 锁相后稳定时),才可从一个时钟源切换到另一个。如果选择尚未就绪的时钟源,则切换在该时钟源就绪时才会进行。
HCLK总线时钟
系统时钟 SYSCLK 经过 AHB 预分频器分频之后得到时钟叫 AHB 总线时钟,即 HCLK,分频因子可以是:[1, 2, 4,8,16,64,128,256,512],具体的由时钟配置寄存器 RCC_CFGR 的 HPRE 位设置。
片上大部分外设的时钟都是经过 HCLK 分频得到,至于 AHB 总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB 的时钟即可。我们这里设置为 1 分频,即 HCLK=SYSCLK=168M F407。
APB2 总线时钟 PCLK2
APB2 总线时钟 PCLK2 由 HCLK 经过高速 APB2 预分频器得到,分频因子可以是:[1,2,4,8,16],具体由时钟配置寄存器 RCC_CFGR 的 PPRE2 位设置。
PCLK2 属于高速的总线时钟,片上高速的外设就挂载到这条总线上,比如全部的 GPIO、USART1、SPI1 等。
至于 APB2 总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB2 的时钟即可。我们这里设置为 2 分频,即 PCLK2 = HCLK /2= 84M(F407)。
APB1 总线时钟 PCLK1
APB1 总线时钟 PCLK1 由 HCLK 经过低速 APB 预分频器得到,分频因子可以是:[1,2,4,8,16],具体由时钟配置寄存器 RCC_CFGR 的 PPRE1 位设置。PCLK1 属于低速的总线时钟,最高为 42M (F407)片上低速的外设就挂载到这条总线上,比如 USART2/3/4/5、SPI2/3,I2C1/2等。
我们这里设置为 4 分频,即 PCLK1 = HCLK/4 = 42M(F407)
配置系统时钟库函数
/**
* @brief 系统时钟配置
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 168000000
* HCLK(Hz) = 168000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 336
* PLL_P = 2
* PLL_Q = 4
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 5
* @param 无
* @retval 无
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* 使能HSE,配置HSE为PLL的时钟源,配置PLL的各种分频因子M N P Q
* PLLCLK = HSE/M*N/P = 12M / 25 *360 / 2 = 180M
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if( ret != HAL_OK)
{
while(1) {}
}
/* 选择PLLCLK作为SYSCLK,并配置 HCLK, PCLK1 and PCLK2 的时钟分频因子
* SYSCLK = PLLCLK = 168M
* HCLK = SYSCLK / 1 = 168M
* PCLK2 = SYSCLK / 2 = 84M
* PCLK1 = SYSCLK / 4 = 42M
*/
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret =HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
if( ret != HAL_OK)
{
while(1) {}
}
}
使用HSE
/*
* 使用HSE时,设置系统时钟的步骤
* 1、开启HSE ,并等待 HSE 稳定
* 2、设置 AHB、APB2、APB1的预分频因子
* 3、设置PLL的时钟来源
* 设置VCO输入时钟 分频因子 m
* 设置VCO输出时钟 倍频因子 n
* 设置PLLCLK时钟分频因子 p
* 设置OTG FS,SDIO,RNG时钟分频因子 q
* 4、开启PLL,并等待PLL稳定
* 5、把PLLCK切换为系统时钟SYSCLK
* 6、读取时钟切换状态位,确保PLLCLK被选为系统时钟
*/
/*
* m: VCO输入时钟 分频因子,取值2~63
* n: VCO输出时钟 倍频因子,取值50~432
* p: PLLCLK时钟分频因子 ,取值2,4,6,8
* q: OTG FS,SDIO,RNG时钟分频因子,取值4~15
* 函数调用举例,使用HSE设置时钟
* SYSCLK=HCLK=168MHz,PCLK2=HCLK/2=84MHz,PCLK1=HCLK/4=42MHz
* HSE_SetSysClock(25, 336, 2, 7);
* 25M / 25 * 336 /2 = 168 M
* HSE作为时钟来源,经过PLL倍频作为系统时钟,这是通常的做法
*/
void HSE_SetSysClock(uint32_t m, uint32_t n, uint32_t p, uint32_t q)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption when
the device is clocked below the maximum system frequency, to update
the voltage scaling value regarding system frequency refer to product
datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
while(1) {};
}
/* Select PLL as system clock source and configure the HCLK,
PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK |
RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
while(1) {};
}
/* STM32F405x/407x/415x/417x Revision Z devices: prefetch is supported */
if (HAL_GetREVID() == 0x1001)
{
/* Enable the Flash prefetch */
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}
}
使用HSI
/*
* 使用HSI时,设置系统时钟的步骤
* 1、开启HSI ,并等待 HSI 稳定
* 2、设置 AHB、APB2、APB1的预分频因子
* 3、设置PLL的时钟来源
* 设置VCO输入时钟 分频因子 m
* 设置VCO输出时钟 倍频因子 n
* 设置PLLCLK时钟分频因子 p
* 设置OTG FS,SDIO,RNG时钟分频因子 q
* 4、开启PLL,并等待PLL稳定
* 5、把PLLCK切换为系统时钟SYSCLK
* 6、读取时钟切换状态位,确保PLLCLK被选为系统时钟
*/
/*
* m: VCO输入时钟 分频因子,取值2~63
* n: VCO输出时钟 倍频因子,取值50~432
* p: PLLCLK时钟分频因子 ,取值2,4,6,8
* q: OTG FS,SDIO,RNG时钟分频因子,取值4~15
* 函数调用举例,使用HSE设置时钟
* SYSCLK=HCLK=168MHz,PCLK2=HCLK/2=84MHz,PCLK1=HCLK/4=42MHz
* HSE_SetSysClock(16, 336, 2, 7);
*16M / 16 * 226 / 2 = 168M
* HSE作为时钟来源,经过PLL倍频作为系统时钟,这是通常的做法
*/
void HSI_SetSysClock(uint32_t m, uint32_t n, uint32_t p, uint32_t q)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
/* Enable Power Control clock */
__HAL_RCC_PWR_CLK_ENABLE();
/* The voltage scaling allows optimizing the power consumption
when the device is clocked below the maximum system frequency,
to update the voltage scaling value regarding system
frequency refer toproduct datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
while(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
while(1) {};
}
/* Select PLL as system clock source and configure the HCLK,
PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
while(1) {};
}
/* STM32F405x/407x/415x/417x Revision Z devices: prefetch is supported */
if (HAL_GetREVID() == 0x1001)
{
/* Enable the Flash prefetch */
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
}
}