1. 一个向量投影1-正交投影 - 图1在向量投影1-正交投影 - 图2上的投影投影1-正交投影 - 图3#card=math&code=P_a%28v%29&id=dzMvu),是投影1-正交投影 - 图4%5Chat%7Ba%7D#card=math&code=%28v%2C%20%5Chat%7Ba%7D%29%5Chat%7Ba%7D&id=jI8Rj), 这里投影1-正交投影 - 图5, 即与投影1-正交投影 - 图6同向的单位向量。由于 投影1-正交投影 - 图7%22%20aria-hidden%3D%22true%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%22389%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%221097%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(2097%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-50%22%20x%3D%220%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20transform%3D%22scale(0.707)%22%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%22908%22%20y%3D%22-213%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%223214%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%223604%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%224089%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%224479%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(4924%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%2213%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2C6%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%225481%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%226148%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%227204%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%227594%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%228079%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(8524%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%2213%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2C6%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%229081%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2212%22%20x%3D%229692%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2210693%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-76%22%20x%3D%2211083%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%2211568%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(12013%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%2213%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2C6%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2212570%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-28%22%20x%3D%2212959%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(13349%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%2213%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2C6%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-2C%22%20x%3D%2213905%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3Cg%20transform%3D%22translate(14351%2C0)%22%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMATHI-61%22%20x%3D%2213%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJSZ1-2C6%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-29%22%20x%3D%2214907%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-3D%22%20x%3D%2215574%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%20%3Cuse%20xlink%3Ahref%3D%22%23E1-MJMAIN-30%22%20x%3D%2216631%22%20y%3D%220%22%3E%3C%2Fuse%3E%0A%3C%2Fg%3E%0A%3C%2Fsvg%3E#card=math&code=%28v-P_a%28v%29%2C%20%5Chat%7Ba%7D%29%20%3D%20%28v%2C%20%5Chat%7Ba%7D%29-%28v%2C%20%5Chat%7Ba%7D%29%28%5Chat%7Ba%7D%2C%20%5Chat%7Ba%7D%29%3D0&id=tJEz4),
      投影1-正交投影 - 图8#card=math&code=a-P_a%28v%29&id=zVaqH)与向量投影1-正交投影 - 图9正交,于是

      投影1-正交投影 - 图10)%5Cperp%20P_a(v).%0A#card=math&code=%28a-P_a%28v%29%29%5Cperp%20P_a%28v%29.%0A&id=wzj9y)

    2. 进一步,如果投影1-正交投影 - 图11投影1-正交投影 - 图12中的投影1-正交投影 - 图13-平面,则任意一个向量投影1-正交投影 - 图14%5E%5Ctop#card=math&code=v%3D%28v_1%2C%20v_2%2C%20v_3%29%5E%5Ctop&id=Dgkk3)在投影1-正交投影 - 图15上的投影是投影1-正交投影 - 图16%5E%5Ctop#card=math&code=%28v_1%2C%20v_2%2C%200%29%5E%5Ctop&id=fNTAe).

    3. 推而广之,如果投影1-正交投影 - 图17是有限维实欧几里得空间,投影1-正交投影 - 图18是非零子空间,记投影1-正交投影 - 图19投影1-正交投影 - 图20的正交补子空间。如果投影1-正交投影 - 图21#card=math&code=%28e1%2C%20%5Cldots%2C%20e_n%29&id=SrwRg)是投影1-正交投影 - 图22的一个标准正交基,我们可以将它扩充为投影1-正交投影 - 图23的一个标准正交基![](https://g.yuque.com/gr/latex?(e_1%2C%20%5Cldots%2C%20e_n%2C%20e%7Bn%2B1%7D%2C%20%5Cldots%2C%20e%7Bk%7D)#card=math&code=%28e_1%2C%20%5Cldots%2C%20e_n%2C%20e%7Bn%2B1%7D%2C%20%5Cldots%2C%20e%7Bk%7D%29&id=CXirg), 其中投影1-正交投影 - 图24. 则任意一个向量投影1-正交投影 - 图25%5E%5Ctop%20%3D%5Csum%7Bi%3D1%7D%5Ek%20vi%20e_i#card=math&code=v%3D%28v_1%2C%20%5Cldots%2C%20v_k%29%5E%5Ctop%20%3D%5Csum%7Bi%3D1%7D%5Ek%20vi%20e_i&id=bzKuY),在投影1-正交投影 - 图26投影1-正交投影 - 图27 上的投影分别是![](https://g.yuque.com/gr/latex?%5Csum%7Bi%3D1%7D%5En%20vi%20e_i%2C%20%5C%3B%20%5Csum%7Bj%3D1%7D%5E%7Bk-n%7D%20vj%20e_j#card=math&code=%5Csum%7Bi%3D1%7D%5En%20vi%20e_i%2C%20%5C%3B%20%5Csum%7Bj%3D1%7D%5E%7Bk-n%7D%20v_j%20e_j&id=AYWV3).

    4. 问题在于,如果投影1-正交投影 - 图28的一个标准正交基还不知道,怎么计算投影?答案是,用Gram-Schmidt正交化,先”制造”出投影1-正交投影 - 图29上的一个标准正交基,然后再用3中的方法计算投影。

    5. 投影1-正交投影 - 图30投影到子空间投影1-正交投影 - 图31 的映射是满射。向量投影1-正交投影 - 图32投影1-正交投影 - 图33上的投影,记作投影1-正交投影 - 图34#card=math&code=P_W%28v%29&id=NfEuK), 可以由矩阵乘法给出:投影1-正交投影 - 图35%3DPv#card=math&code=P_W%28v%29%3DPv&id=unbRG), 其中投影1-正交投影 - 图36被成为从投影1-正交投影 - 图37投影1-正交投影 - 图38的投影矩阵。可以证明投影是线性映射,于是,只要知道投影1-正交投影 - 图39的一个基被投影到哪些矩阵,就能求出投影1-正交投影 - 图40。由直和分解投影1-正交投影 - 图41, 以及投影的定义,可知投影1-正交投影 - 图42中任何向量,投影到投影1-正交投影 - 图43中,仍然得到这个向量本身。同理,对投影1-正交投影 - 图44中的向量,也是如此。所以在3中提到的那个标准正交基之下,矩阵投影1-正交投影 - 图45投影1-正交投影 - 图46阶单位矩阵。