线性最小二乘问题通常描述如下:设投影3-Least square approximation - 图1平面上有投影3-Least square approximation - 图2个定点投影3-Least square approximation - 图3%2C%20%5C%3B%201%20%5Cleq%20i%20%5Cleq%20n#card=math&code=P_i%28x_i%2C%20y_i%29%2C%20%5C%3B%201%20%5Cleq%20i%20%5Cleq%20n&id=fXGBX),它们的横坐标投影3-Least square approximation - 图4各不相同. 求实数投影3-Least square approximation - 图5, 使得

    投影3-Least square approximation - 图6

    取得最小值. 如果投影3-Least square approximation - 图7是问题的解,则称直线投影3-Least square approximation - 图8经验配线

    用微积分(偏导数),可以求出投影3-Least square approximation - 图9是下述线性方程组的解

    投影3-Least square approximation - 图10%20a%20%2B%20%5Cbig(%20%5Csum%7Bi%3D1%7D%5En%20x_i%20%5Cbig)b%20%3D%20%5Csum%7Bi%3D1%7D%5En%20xi%20y_i%2C%20%5C%5C%0A%0A%5Cbig(%20%5Csum%7Bi%3D1%7D%5En%20xi%20%5Cbig)a%20%2B%20nb%20%3D%20%5Csum%7Bi%3D1%7D%5En%20yi.%0A%0A%5Cend%7Bcases%7D%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%5Clabel%7Beq%3Aleastsqsol%7D%0A%0A%5Cbegin%7Bcases%7D%0A%0A%5Cbig%28%20%5Csum%7Bi%3D1%7D%5En%20xi%5E2%20%5Cbig%29%20a%20%2B%20%5Cbig%28%20%5Csum%7Bi%3D1%7D%5En%20xi%20%5Cbig%29b%20%3D%20%5Csum%7Bi%3D1%7D%5En%20xi%20y_i%2C%20%5C%5C%0A%0A%5Cbig%28%20%5Csum%7Bi%3D1%7D%5En%20xi%20%5Cbig%29a%20%2B%20nb%20%3D%20%5Csum%7Bi%3D1%7D%5En%20y_i.%0A%0A%5Cend%7Bcases%7D%0A%0A%5Cend%7Bequation%7D%0A&id=m7sfn)

    这个方程组的系数矩阵

    投影3-Least square approximation - 图11

    的行列式等于投影3-Least square approximation - 图12根据Cramer法则,这个方程组有唯一解. 即目标函数有唯一驻点投影3-Least square approximation - 图13这个就是目标函数的最小值点.

    注1:引入两个投影3-Least square approximation - 图14维向量投影3-Least square approximation - 图15%5E%5Ctop%2C%20%5Cmathbf%7B1%7D%3D(1%2C%20%5Cldots%2C%201)%5E%5Ctop#card=math&code=%5Cmathbf%7Bx%7D%3D%28x_1%2C%20%5Cldots%2C%20x_n%29%5E%5Ctop%2C%20%5Cmathbf%7B1%7D%3D%281%2C%20%5Cldots%2C%201%29%5E%5Ctop&id=ICFRR). Cauchy不等式

    投影3-Least square approximation - 图16%5E2%20%5Cleq%20%7C%5Cmathbf%7Bx%7D%7C%5E2%20%7C%5Cmathbf%7B1%7D%7C%5E2%0A#card=math&code=%28%5Cmathbf%7Bx%20%5Ccdot%201%7D%29%5E2%20%5Cleq%20%7C%5Cmathbf%7Bx%7D%7C%5E2%20%7C%5Cmathbf%7B1%7D%7C%5E2%0A&id=ujSs6)

    给出

    投影3-Least square approximation - 图17%5E2%20%5Cleq%20n%20%5Csum%7Bi%3D1%7D%5En%20x_i%5E2.%0A#card=math&code=%5Cbig%28%5Csum%7Bi%3D1%7D%5En%20xi%5Cbig%29%5E2%20%5Cleq%20n%20%5Csum%7Bi%3D1%7D%5En%20x_i%5E2.%0A&id=CPKOM)

    由于我们假设投影3-Least square approximation - 图18互不相等,所以等号不可能取得到。这解释了为何投影3-Least square approximation - 图19.

    注2:上面用导数得到的使得目标函数取最小值时,参数投影3-Least square approximation - 图20#card=math&code=%28a%2C%20b%29&id=TGjk2)应该满足的方程组,称为最小二乘问题的法方程组


    下面用几何观点来推导法方程组. 先用解线性方程组描述最小二乘问题:

    投影3-Least square approximation - 图21

    这个方程组只有2个未知数投影3-Least square approximation - 图22,但有投影3-Least square approximation - 图23个方程. 我们称之为过定(over determined)的方程组.

    投影3-Least square approximation - 图24

    因为当投影3-Least square approximation - 图25时,有投影3-Least square approximation - 图26. 所以投影3-Least square approximation - 图27%3D2#card=math&code=r%28A%29%3D2&id=AYGf0). 方程组(3)用矩阵可以改写为

    投影3-Least square approximation - 图28

    而目标函数可以表示为投影3-Least square approximation - 图29.

    引理:我们有投影3-Least square approximation - 图30, 所以投影3-Least square approximation - 图31满秩,而且投影3-Least square approximation - 图32

    我们想要找最小二乘问题的一个近似解投影3-Least square approximation - 图33,使得目标函数取得最小值。我们称这样的投影3-Least square approximation - 图34是方程组(3)的最小二乘解

    投影3-Least square approximation - 图35. 这是投影3-Least square approximation - 图36的由投影3-Least square approximation - 图37投影3-Least square approximation - 图38张成的投影3-Least square approximation - 图39维线性子空间。当投影3-Least square approximation - 图40时,自然可以找到解投影3-Least square approximation - 图41. 但通常投影3-Least square approximation - 图42。我们想要目标函数达到最小,由正交投影的几何刻画,就是要找系数投影3-Least square approximation - 图43,使得

    投影3-Least square approximation - 图44.%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%5Clabel%7Beq%3Aleastsqsol_matrixform%7D%0A%0AA%5Cbegin%7Bpmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bpmatrix%7D%20%3D%20P_U%28%5Cmathbf%7BY%7D%29.%0A%0A%5Cend%7Bequation%7D%0A&id=tgGNF)

    这里投影3-Least square approximation - 图45是到投影3-Least square approximation - 图46的正交投影。

    下面的命题指出这个条件等价于法方程.

    命题:记投影3-Least square approximation - 图47. 把投影3-Least square approximation - 图48看成投影3-Least square approximation - 图49投影3-Least square approximation - 图50维子空间. 那么

    投影3-Least square approximation - 图51

    此时方程组有解

    投影3-Least square approximation - 图52

    这正是法方程的解.

    这里我们用投影的几何性质给出证明。之后会用正交投影的公式直接计算出投影3-Least square approximation - 图53#card=math&code=P_U%20%28%5Cmathbf%7BY%7D%29&id=wDZCo), 从而给出另一个证明.

    证:如果投影3-Least square approximation - 图54使得投影3-Least square approximation - 图55%20%3D%20P_U(%5Cmathbf%7BY%7D)#card=math&code=A%5Cbig%28%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bsmallmatrix%7D%5Cbig%29%20%3D%20P_U%28%5Cmathbf%7BY%7D%29&id=XGymZ), 那么投影3-Least square approximation - 图56%20%3D%20%5Cmathbf%7BY%7D%20-%20P_U(%5Cmathbf%7BY%7D)%20%5Cin%20U%5E%5Cperp#card=math&code=%5Cmathbf%7BY%7D-A%5Cbig%28%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bsmallmatrix%7D%5Cbig%29%20%3D%20%5Cmathbf%7BY%7D%20-%20P_U%28%5Cmathbf%7BY%7D%29%20%5Cin%20U%5E%5Cperp&id=q87xj),

    投影3-Least square approximation - 图57一定与投影3-Least square approximation - 图58的列向量投影3-Least square approximation - 图59正交(因为投影3-Least square approximation - 图60投影3-Least square approximation - 图61的列向量投影3-Least square approximation - 图62张成的线性空间). 用矩阵表达,即

    投影3-Least square approximation - 图63%20%3D%20%5Cmathbf%7B0%7D.%0A#card=math&code=A%5E%5Ctop%20%5Cbig%28%5Cmathbf%7BY%7D-A%5Cbegin%7Bpmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bpmatrix%7D%5Cbig%29%20%3D%20%5Cmathbf%7B0%7D.%0A&id=umquY)

    这就是. 由此解出投影3-Least square approximation - 图64#card=math&code=%5Cbig%28%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bsmallmatrix%7D%5Cbig%29&id=bShhA),再代入投影3-Least square approximation - 图65%20%3D%20A%5Cbig(%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bsmallmatrix%7D%5Cbig)#card=math&code=P_U%28%5Cmathbf%7BY%7D%29%20%3D%20A%5Cbig%28%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%20%5Cend%7Bsmallmatrix%7D%5Cbig%29&id=h7OPB),就得出(5). 证毕.