先回忆记号:设
我们假设当时,有
. 所以
%3D2#card=math&code=r%28A%29%3D2&id=leDzL).
最小二乘问题:考虑方程组
求常数,使得目标函数
取得最小值。
解:
我们用正交投影的公式直接计算#card=math&code=P_U%28%5Cmathbf%7BY%7D%29&id=FCWhc), 从而导出最小二乘问题的法方程。用Schmidt正交化,从
的基
中得到正交基
, 其中
%7D%7B(X%2C%20X)%7DX%7D.%0A#card=math&code=%5Cmathbf%7BX%27%20%3D%201%20-%20%5Cfrac%7B%28X%2C%201%29%7D%7B%28X%2C%20X%29%7DX%7D.%0A&id=dliX9)
那么
%20%26%3D%20%5Cmathbf%7B%5Cfrac%7B(Y%2C%20X)%7D%7B(X%2C%20X)%7DX%20%2B%20%5Cfrac%7B(Y%2C%20X’)%7D%7B(X’%2C%20X’)%7DX’%7D%5C%5C%0A%0A%26%3D%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX’%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B-2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX’%7D%5C%7C%5E%7B-2%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7BX%7D%5E%5Ctop%20%5Cmathbf%7BY%7D%5C%5C%20%5Cmathbf%7BX’%7D%5E%5Ctop%5Cmathbf%7BY%7D%0A%0A%5Cend%7Bpmatrix%7D.%0A%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Cbegin%7Baligned%7D%0A%0AP_U%28%5Cmathbf%7BY%7D%29%20%26%3D%20%5Cmathbf%7B%5Cfrac%7B%28Y%2C%20X%29%7D%7B%28X%2C%20X%29%7DX%20%2B%20%5Cfrac%7B%28Y%2C%20X%27%29%7D%7B%28X%27%2C%20X%27%29%7DX%27%7D%5C%5C%0A%0A%26%3D%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX%27%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B-2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX%27%7D%5C%7C%5E%7B-2%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7BX%7D%5E%5Ctop%20%5Cmathbf%7BY%7D%5C%5C%20%5Cmathbf%7BX%27%7D%5E%5Ctop%5Cmathbf%7BY%7D%0A%0A%5Cend%7Bpmatrix%7D.%0A%0A%5Cend%7Baligned%7D%0A&id=T9vz9)
代入基变换矩阵
%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%2C%0A#card=math&code=%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX%27%7D%20%5Cend%7Bpmatrix%7D%20%20%3D%20%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7B1%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%2C%0A&id=GtEeX)
我们先计算:
%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX’%7D%5C%7C%5E%7B2%7D%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%20%5Cbigg%5B%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7B(X%2C%20X)%7D%20%26%20%5C%5C%20%26%20%5Cmathbf%7B(X’%2C%20X’)%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbigg%5D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%5Cbigg%5B%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%5E%5Ctop%20%5C%5C%20%5Cmathbf%7B1%7D%5E%5Ctop%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%26%5Cmathbf%7B1%7D%5Cend%7Bpmatrix%7D%5Cbigg%5D%5E%7B-1%7D%5C%5C%0A%0A%3D%26%20(A%5E%5Ctop%20A)%5E%7B-1%7D%2C%0A%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Cbegin%7Baligned%7D%0A%0A%26%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX%27%7D%5C%7C%5E%7B2%7D%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%20%5Cbigg%5B%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7B%28X%2C%20X%29%7D%20%26%20%5C%5C%20%26%20%5Cmathbf%7B%28X%27%2C%20X%27%29%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbigg%5D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%5Cbigg%5B%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%5E%5Ctop%20%5C%5C%20%5Cmathbf%7B1%7D%5E%5Ctop%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%26%5Cmathbf%7B1%7D%5Cend%7Bpmatrix%7D%5Cbigg%5D%5E%7B-1%7D%5C%5C%0A%0A%3D%26%20%28A%5E%5Ctop%20A%29%5E%7B-1%7D%2C%0A%0A%5Cend%7Baligned%7D%0A&id=a5FF5)
由此可见
%3D%20A(A%5E%5Ctop%20A)%5E%7B-1%7D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D.%0A#card=math&code=P_U%28%5Cmathbf%7BY%7D%29%3D%20A%28A%5E%5Ctop%20A%29%5E%7B-1%7D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D.%0A&id=rN9nA)
余下就是解出法方程%20%3D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D#card=math&code=A%5E%5Ctop%20A%20%5Cbig%28%20%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%5Cend%7Bsmallmatrix%7D%5Cbig%29%20%3D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D&id=ADHgM). 搞掂!
下面简介高维(即多变量)的线性最小二乘回归问题:给定了中的
#card=math&code=n%20%5C%2C%20%28n%20%3E%20d%2B1%29&id=Xm7tY)个数据点
%2C%20%5C%2C%20(1%5Cleq%20i%20%5Cleq%20n)#card=math&code=Pi%28a%7Bi1%7D%2C%20%5Cldots%2C%20a_%7Bid%7D%2C%20b_i%29%2C%20%5C%2C%20%281%5Cleq%20i%20%5Cleq%20n%29&id=S16oI). 求实数
, 使得目标函数
%5E2%0A#card=math&code=%5Csum%7Bi%3D1%7D%5En%20%28a%7Bi1%7Dc1%20%2B%20a%7Bi2%7Dc2%20%2B%20%5Cldots%20%2B%20a%7Bid%7Dc_d%20-%20b_i%29%5E2%0A&id=EvbJM)
取最小值.
记
那么目标函数可以表达为
使目标函数取得最小值的解称为最小二乘解. 之前我们讨论的是
的情形. 一般情况的解法完全一样. 即,最小二乘解
应该使得
与
的列向量
张成的线性空间正交. 为此,必须且只需
%20%3D%20%5Cmathbf%7Ba%7D_i%5E%5Ctop%20(AC-B)%20%3D%200%2C%20%5Cquad%201%5Cleq%20i%20%5Cleq%20d.%20%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%5Clabel%7Beq%3Alsq_normal_eq%7D%0A%0A%28AC-B%2C%20%5Cmathbf%7Ba%7D_i%29%20%3D%20%5Cmathbf%7Ba%7D_i%5E%5Ctop%20%28AC-B%29%20%3D%200%2C%20%5Cquad%201%5Cleq%20i%20%5Cleq%20d.%20%0A%0A%5Cend%7Bequation%7D%0A&id=fdyln)
由于向量按行恰好排成矩阵
于是上述条件合起来,用矩阵来表示,正好是
%20%3D%20%20%5Cmathbf%7B0%7D%20%5CLongleftrightarrow%20A%5E%5Ctop%20A%20C%20%3D%20A%5E%5Ctop%20B.%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%0A%0AA%5E%5Ctop%20%28AC-B%29%20%3D%20%20%5Cmathbf%7B0%7D%20%5CLongleftrightarrow%20A%5E%5Ctop%20A%20C%20%3D%20A%5E%5Ctop%20B.%0A%0A%5Cend%7Bequation%7D%0A&id=iJJlz)
这就是线性最小二乘回归问题的法方程.