先回忆记号:设

    投影4-Least square approximation II - 图1

    我们假设当投影4-Least square approximation II - 图2时,有投影4-Least square approximation II - 图3. 所以投影4-Least square approximation II - 图4%3D2#card=math&code=r%28A%29%3D2&id=leDzL).

    最小二乘问题:考虑方程组

    投影4-Least square approximation II - 图5

    求常数投影4-Least square approximation II - 图6,使得目标函数投影4-Least square approximation II - 图7取得最小值。

    解:

    我们用正交投影的公式直接计算投影4-Least square approximation II - 图8#card=math&code=P_U%28%5Cmathbf%7BY%7D%29&id=FCWhc), 从而导出最小二乘问题的法方程。用Schmidt正交化,从投影4-Least square approximation II - 图9的基投影4-Least square approximation II - 图10中得到正交基投影4-Least square approximation II - 图11, 其中

    投影4-Least square approximation II - 图12%7D%7B(X%2C%20X)%7DX%7D.%0A#card=math&code=%5Cmathbf%7BX%27%20%3D%201%20-%20%5Cfrac%7B%28X%2C%201%29%7D%7B%28X%2C%20X%29%7DX%7D.%0A&id=dliX9)

    那么

    投影4-Least square approximation II - 图13%20%26%3D%20%5Cmathbf%7B%5Cfrac%7B(Y%2C%20X)%7D%7B(X%2C%20X)%7DX%20%2B%20%5Cfrac%7B(Y%2C%20X’)%7D%7B(X’%2C%20X’)%7DX’%7D%5C%5C%0A%0A%26%3D%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX’%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B-2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX’%7D%5C%7C%5E%7B-2%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7BX%7D%5E%5Ctop%20%5Cmathbf%7BY%7D%5C%5C%20%5Cmathbf%7BX’%7D%5E%5Ctop%5Cmathbf%7BY%7D%0A%0A%5Cend%7Bpmatrix%7D.%0A%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Cbegin%7Baligned%7D%0A%0AP_U%28%5Cmathbf%7BY%7D%29%20%26%3D%20%5Cmathbf%7B%5Cfrac%7B%28Y%2C%20X%29%7D%7B%28X%2C%20X%29%7DX%20%2B%20%5Cfrac%7B%28Y%2C%20X%27%29%7D%7B%28X%27%2C%20X%27%29%7DX%27%7D%5C%5C%0A%0A%26%3D%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX%27%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B-2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX%27%7D%5C%7C%5E%7B-2%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7BX%7D%5E%5Ctop%20%5Cmathbf%7BY%7D%5C%5C%20%5Cmathbf%7BX%27%7D%5E%5Ctop%5Cmathbf%7BY%7D%0A%0A%5Cend%7Bpmatrix%7D.%0A%0A%5Cend%7Baligned%7D%0A&id=T9vz9)

    代入基变换矩阵

    投影4-Least square approximation II - 图14%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%2C%0A#card=math&code=%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7BX%27%7D%20%5Cend%7Bpmatrix%7D%20%20%3D%20%0A%0A%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%20%26%20%5Cmathbf%7B1%7D%20%5Cend%7Bpmatrix%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%2C%0A&id=GtEeX)

    我们先计算:

    投影4-Least square approximation II - 图15%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX’%7D%5C%7C%5E%7B2%7D%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%20%5Cbigg%5B%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7B(X%2C%20X)%7D%20%26%20%5C%5C%20%26%20%5Cmathbf%7B(X’%2C%20X’)%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B(%5Cmathbf%7BX%2C%201%7D)%7D%7B(%5Cmathbf%7BX%2C%20X%7D)%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbigg%5D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%5Cbigg%5B%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%5E%5Ctop%20%5C%5C%20%5Cmathbf%7B1%7D%5E%5Ctop%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%26%5Cmathbf%7B1%7D%5Cend%7Bpmatrix%7D%5Cbigg%5D%5E%7B-1%7D%5C%5C%0A%0A%3D%26%20(A%5E%5Ctop%20A)%5E%7B-1%7D%2C%0A%0A%5Cend%7Baligned%7D%0A#card=math&code=%5Cbegin%7Baligned%7D%0A%0A%26%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5C%7C%5Cmathbf%7BX%7D%5C%7C%5E%7B2%7D%20%26%20%5C%5C%20%26%20%5C%7C%5Cmathbf%7BX%27%7D%5C%7C%5E%7B2%7D%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%20%5Cbigg%5B%20%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%200%20%5C%5C%20%0A%0A-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A%5Cmathbf%7B%28X%2C%20X%29%7D%20%26%20%5C%5C%20%26%20%5Cmathbf%7B%28X%27%2C%20X%27%29%7D%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbegin%7Bpmatrix%7D%0A%0A1%20%26%20-%20%5Cfrac%7B%28%5Cmathbf%7BX%2C%201%7D%29%7D%7B%28%5Cmathbf%7BX%2C%20X%7D%29%7D%20%5C%5C%200%20%26%201%0A%0A%5Cend%7Bpmatrix%7D%0A%0A%5Cbigg%5D%5E%7B-1%7D%20%5C%5C%0A%0A%3D%26%5Cbigg%5B%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%5E%5Ctop%20%5C%5C%20%5Cmathbf%7B1%7D%5E%5Ctop%20%5Cend%7Bpmatrix%7D%20%5Cbegin%7Bpmatrix%7D%20%5Cmathbf%7BX%7D%26%5Cmathbf%7B1%7D%5Cend%7Bpmatrix%7D%5Cbigg%5D%5E%7B-1%7D%5C%5C%0A%0A%3D%26%20%28A%5E%5Ctop%20A%29%5E%7B-1%7D%2C%0A%0A%5Cend%7Baligned%7D%0A&id=a5FF5)

    由此可见

    投影4-Least square approximation II - 图16%3D%20A(A%5E%5Ctop%20A)%5E%7B-1%7D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D.%0A#card=math&code=P_U%28%5Cmathbf%7BY%7D%29%3D%20A%28A%5E%5Ctop%20A%29%5E%7B-1%7D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D.%0A&id=rN9nA)

    余下就是解出法方程投影4-Least square approximation II - 图17%20%3D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D#card=math&code=A%5E%5Ctop%20A%20%5Cbig%28%20%5Cbegin%7Bsmallmatrix%7D%20a%20%5C%5C%20b%5Cend%7Bsmallmatrix%7D%5Cbig%29%20%3D%20A%5E%5Ctop%20%5Cmathbf%7BY%7D&id=ADHgM). 搞掂!


    下面简介高维(即多变量)的线性最小二乘回归问题:给定了投影4-Least square approximation II - 图18中的投影4-Least square approximation II - 图19#card=math&code=n%20%5C%2C%20%28n%20%3E%20d%2B1%29&id=Xm7tY)个数据点投影4-Least square approximation II - 图20%2C%20%5C%2C%20(1%5Cleq%20i%20%5Cleq%20n)#card=math&code=Pi%28a%7Bi1%7D%2C%20%5Cldots%2C%20a_%7Bid%7D%2C%20b_i%29%2C%20%5C%2C%20%281%5Cleq%20i%20%5Cleq%20n%29&id=S16oI). 求实数投影4-Least square approximation II - 图21, 使得目标函数

    投影4-Least square approximation II - 图22%5E2%0A#card=math&code=%5Csum%7Bi%3D1%7D%5En%20%28a%7Bi1%7Dc1%20%2B%20a%7Bi2%7Dc2%20%2B%20%5Cldots%20%2B%20a%7Bid%7Dc_d%20-%20b_i%29%5E2%0A&id=EvbJM)

    取最小值.

    投影4-Least square approximation II - 图23

    那么目标函数可以表达为

    投影4-Least square approximation II - 图24

    使目标函数取得最小值的解投影4-Least square approximation II - 图25称为最小二乘解. 之前我们讨论的是投影4-Least square approximation II - 图26的情形. 一般情况的解法完全一样. 即,最小二乘解投影4-Least square approximation II - 图27应该使得投影4-Least square approximation II - 图28投影4-Least square approximation II - 图29的列向量投影4-Least square approximation II - 图30张成的线性空间正交. 为此,必须且只需

    投影4-Least square approximation II - 图31%20%3D%20%5Cmathbf%7Ba%7D_i%5E%5Ctop%20(AC-B)%20%3D%200%2C%20%5Cquad%201%5Cleq%20i%20%5Cleq%20d.%20%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%5Clabel%7Beq%3Alsq_normal_eq%7D%0A%0A%28AC-B%2C%20%5Cmathbf%7Ba%7D_i%29%20%3D%20%5Cmathbf%7Ba%7D_i%5E%5Ctop%20%28AC-B%29%20%3D%200%2C%20%5Cquad%201%5Cleq%20i%20%5Cleq%20d.%20%0A%0A%5Cend%7Bequation%7D%0A&id=fdyln)

    由于向量投影4-Least square approximation II - 图32按行恰好排成矩阵投影4-Least square approximation II - 图33于是上述条件合起来,用矩阵来表示,正好是

    投影4-Least square approximation II - 图34%20%3D%20%20%5Cmathbf%7B0%7D%20%5CLongleftrightarrow%20A%5E%5Ctop%20A%20C%20%3D%20A%5E%5Ctop%20B.%0A%0A%5Cend%7Bequation%7D%0A#card=math&code=%5Cbegin%7Bequation%7D%0A%0AA%5E%5Ctop%20%28AC-B%29%20%3D%20%20%5Cmathbf%7B0%7D%20%5CLongleftrightarrow%20A%5E%5Ctop%20A%20C%20%3D%20A%5E%5Ctop%20B.%0A%0A%5Cend%7Bequation%7D%0A&id=iJJlz)

    这就是线性最小二乘回归问题的法方程.