所谓循环依赖指的是:BeanA对象的创建依赖于BeanB,BeanB对象的创建也依赖于BeanA,这就造成了死循环,如果不做处理的话势必会造成栈溢出。Spring通过提前曝光机制,利用三级缓存解决循环依赖问题。本节将记录单实例Bean的创建过程,并且仅记录两种常见的循环依赖情况:普通Bean与普通Bean之间的循环依赖,普通Bean与代理Bean之间的循环依赖。
Bean创建源码
我们先通过源码熟悉下Bean创建过程(源码仅贴出相关部分)。
IOC容器获取Bean的入口为AbstractBeanFactory类的getBean方法:
public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {
......
@Override
public Object getBean(String name) throws BeansException {
return doGetBean(name, null, null, false);
}
......
}
该方法是一个空壳方法,具体逻辑都在doGetBean方法内:
public abstract class AbstractBeanFactory extends FactoryBeanRegistrySupport implements ConfigurableBeanFactory {
......
protected <T> T doGetBean(
String name, @Nullable Class<T> requiredType, @Nullable Object[] args, boolean typeCheckOnly)
throws BeansException {
// 获取Bean名称
String beanName = transformedBeanName(name);
Object bean;
// 从三级缓存中获取目标Bean实例
Object sharedInstance = getSingleton(beanName);
if (sharedInstance != null && args == null) {
......
// 不为空,则进行后续处理并返回
bean = getObjectForBeanInstance(sharedInstance, name, beanName, null);
} else {
......
try {
......
RootBeanDefinition mbd = getMergedLocalBeanDefinition(beanName);
......
// 从三级缓存中没有获取到Bean实例,并且目标Bean是单实例Bean的话
if (mbd.isSingleton()) {
// 通过getSingleton(String beanName, ObjectFactory<?> singletonFactory)方法创建Bean实例
sharedInstance = getSingleton(beanName, () -> {
try {
// 创建Bean实例
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
......
}
});
// 后续处理,并返回
bean = getObjectForBeanInstance(sharedInstance, name, beanName, mbd);
}
......
}
catch (BeansException ex) {
......
}
finally {
......
}
}
......
return (T) bean;
}
......
}
doGetBean方法中先通过getSingleton(String beanName)方法从三级缓存中获取Bean实例,如果不为空则进行后续处理;如果为空,则通过getSingleton(String beanName, ObjectFactory<?> singletonFactory)方法创建Bean实例并进行后续处理。
这两个方法都是AbstractBeanFactory父类DefaultSingletonBeanRegistry的方法,AbstractBeanFactory层级关系图如下所示:
getSingleton(String beanName)相关源码如下所示:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
......
@Override
@Nullable
public Object getSingleton(String beanName) {
return getSingleton(beanName, true);
}
......
@Nullable
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// 从一级缓存中获取目标Bean实例
Object singletonObject = this.singletonObjects.get(beanName);
// 如果从一级缓存中没有获取到,并且该Bean处于正在创建中的状态时
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
// 从二级缓存获取目标Bean实例
singletonObject = this.earlySingletonObjects.get(beanName);
// 如果没有获取到,并且允许提前曝光的话
if (singletonObject == null && allowEarlyReference) {
synchronized (this.singletonObjects) {
// 在锁内重新从一级缓存中往下查找
singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null) {
// 从三级缓存中取出目标Bean工厂对象
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
// 工厂对象不为空,则通过调用getObject方法实例化Bean实例
singletonObject = singletonFactory.getObject();
// 放到二级缓存中
this.earlySingletonObjects.put(beanName, singletonObject);
// 删除对应的三级缓存
this.singletonFactories.remove(beanName);
}
}
}
}
}
}
return singletonObject;
}
......
所谓的三级缓存指的是DefaultSingletonBeanRegistry类的三个成员变量:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
/** Cache of singleton objects: bean name to bean instance. */
private final Map<String, Object> singletonObjects = new ConcurrentHashMap<>(256);
/** Cache of singleton factories: bean name to ObjectFactory. */
private final Map<String, ObjectFactory<?>> singletonFactories = new HashMap<>(16);
/** Cache of early singleton objects: bean name to bean instance. */
private final Map<String, Object> earlySingletonObjects = new ConcurrentHashMap<>(16);
......
}
变量 | 描述 |
---|---|
singletonObjects | 一级缓存,key为Bean名称,value为Bean实例。这里的Bean实例指的是已经完全创建好的,即已经经历实例化->属性填充->初始化以及各种后置处理过程的Bean,可直接使用。 |
earlySingletonObjects | 二级缓存,key为Bean名称,value为Bean实例。这里的Bean实例指的是仅完成实例化的Bean,还未进行属性填充等后续操作。用于提前曝光,供别的Bean引用,解决循环依赖。 |
singletonFactories | 三级缓存,key为Bean名称,value为Bean工厂。在Bean实例化后,属性填充之前,如果允许提前曝光,Spring会把该Bean转换成Bean工厂并加入到三级缓存。在需要引用提前曝光对象时再通过工厂对象的getObject()方法获取。 |
如果通过三级缓存的查找都没有找到目标Bean实例,则通过getSingleton(String beanName, ObjectFactory<?> singletonFactory)方法创建:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
......
public Object getSingleton(String beanName, ObjectFactory<?> singletonFactory) {
synchronized (this.singletonObjects) {
// 从一级缓存获取
Object singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
// 为空则继续
......
// 方法内会将当前Bean名称添加到正在创建Bean的集合(singletonsCurrentlyInCreation)中
beforeSingletonCreation(beanName);
boolean newSingleton = false;
......
try {
// 通过函数式接口创建Bean实例,该实例已经经历实例化->属性填充->初始化以及各种后置处理过程,可直接使用
singletonObject = singletonFactory.getObject();
newSingleton = true;
}
catch (IllegalStateException ex) {
......
}
finally {
......
}
if (newSingleton) {
// 添加到缓存中
addSingleton(beanName, singletonObject);
}
}
return singletonObject;
}
}
protected void addSingleton(String beanName, Object singletonObject) {
synchronized (this.singletonObjects) {
// 添加到一级缓存
this.singletonObjects.put(beanName, singletonObject);
// 删除对应的二三级缓存
this.singletonFactories.remove(beanName);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
......
}
上述代码重点关注singletonFactory.getObject(),singletonFactory是一个函数式接口,对应AbstractBeanFactory的doGetBean方法中的lambda表达式:
sharedInstance = getSingleton(beanName, () -> {
try {
// 创建Bean实例
return createBean(beanName, mbd, args);
}
catch (BeansException ex) {
......
}
});
重点关注createBean方法。该方法为抽象方法,由AbstractBeanFactory子类AbstractAutowireCapableBeanFactory实现:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
implements AutowireCapableBeanFactory {
......
@Override
protected Object createBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
......
try {
// 创建Bean实例
Object beanInstance = doCreateBean(beanName, mbdToUse, args);
return beanInstance;
}
catch (BeanCreationException | ImplicitlyAppearedSingletonException ex) {
......
}
}
......
}
doCreateBean源码:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
implements AutowireCapableBeanFactory {
......
protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
BeanWrapper instanceWrapper = null;
......
// 实例化Bean
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
Object bean = instanceWrapper.getWrappedInstance();
......
synchronized (mbd.postProcessingLock) {
if (!mbd.postProcessed) {
try {
// 执行MergedBeanDefinitionPostProcessor类型后置处理器
applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
}
catch (Throwable ex) {
......
}
}
}
// 如果该Bean是单例,并且allowCircularReferences属性为true(标识允许循环依赖的出现)以及该Bean正在创建中
// 的话,earlySingletonExposure就为true,标识允许单实例Bean提前暴露原始对象引用(仅实例化)
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
// 添加到单实例工厂集合中,即三级缓存对象,该方法第二个参数类型为ObjectFactory<?> singletonFactory,
// 前面提到过,它是一个函数式接口,这里用lambda表达式() -> getEarlyBeanReference(beanName, mbd, bean)表示
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
Object exposedObject = bean;
try {
// 属性赋值操作
populateBean(beanName, mbd, instanceWrapper);
// 初始化Bean(初始化操作主要包括xxxxAware注入,BeanPostProcessor后置处理器方法调用以
// 及InitializingBean接口方法调用,感兴趣的可以自己查看源码)
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
catch (Throwable ex) {
......
}
// 如果earlySingletonExposure为true
if (earlySingletonExposure) {
// 第二个参数为false表示仅从一级和二级缓存中获取Bean实例
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
if (exposedObject == bean) {
// 如果从一级和二级缓存中获取Bean实例不为空,并且exposedObject == bean的话,
// 将earlySingletonReference赋值给exposedObject返回
exposedObject = earlySingletonReference;
}
......
}
}
......
// 返回最终Bean实例
return exposedObject;
}
......
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
Object exposedObject = bean;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
// SmartInstantiationAwareBeanPostProcessor类型后置处理,常见的场景为AOP代理
for (SmartInstantiationAwareBeanPostProcessor bp : getBeanPostProcessorCache().smartInstantiationAware) {
exposedObject = bp.getEarlyBeanReference(exposedObject, beanName);
}
}
return exposedObject;
}
}
addSingletonFactory方法为父类DefaultSingletonBeanRegistry的方法:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
......
protected void addSingletonFactory(String beanName, ObjectFactory<?> singletonFactory) {
synchronized (this.singletonObjects) {
// 一级缓存没有目标Bean实例的话,添加三级缓存
if (!this.singletonObjects.containsKey(beanName)) {
this.singletonFactories.put(beanName, singletonFactory);
this.earlySingletonObjects.remove(beanName);
this.registeredSingletons.add(beanName);
}
}
}
......
}
上述整个过程可以用下图来总结(可右键选择新标签页中打开图片):
光看源码有点抽象,下面我们通过两个场景来加深理解。
普通Bean与普通Bean
首先模拟普通Spring Bean与普通Spring Bean之间循环依赖的场景。
新建SpringBoot项目,pom引入如下依赖:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
</dependencies>
新建CircularReferenceTest类:
public class CircularReferenceTest {
public static void main(String[] args) {
AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(BeanA.class, BeanB.class);
BeanA beanA = context.getBean(BeanA.class);
BeanB beanB = context.getBean(BeanB.class);
BeanB beanBInBeanA = beanA.getBeanB();
BeanA beanAInBeanB = beanB.getBeanA();
System.out.println(beanA);
System.out.println(beanB);
System.out.println(beanB == beanBInBeanA);
System.out.println(beanA == beanAInBeanB);
}
}
class BeanA {
@Autowired
private BeanB beanB;
public BeanB getBeanB() {
return beanB;
}
public void setBeanB(BeanB beanB) {
this.beanB = beanB;
}
}
class BeanB {
@Autowired
private BeanA beanA;
public BeanA getBeanA() {
return beanA;
}
public void setBeanA(BeanA beanA) {
this.beanA = beanA;
}
}
上面代码通过AnnotationConfigApplicationContext创建了IOC容器,并先后注册了BeanA和BeanB,BeanA和BeanB相互依赖,程序输出如下:
cc.mrbird.BeanA@368f2016
cc.mrbird.BeanB@6f03482
true
true
可以看到,Spring成功解决了循环依赖。下面配合源码来分析这个过程。
上面程序中,先创建BeanA,Spring内部调用doGetBean方法获取BeanA。一开始三级缓存中肯定没有BeanA和BeanB相关实例:
所以我们直接看doCreateBean相关源码:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
implements AutowireCapableBeanFactory {
......
protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
BeanWrapper instanceWrapper = null;
......
// 实例化BeanA,BeanA的早期对象,属性还未赋值,还未进行后置处理
if (instanceWrapper == null) {
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
Object bean = instanceWrapper.getWrappedInstance();
......
// BeanA是单例对象,并且allowCircularReferences为true,BeanA正在创建中,所以
// 最终earlySingletonExposure为true
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
// 将BeanA早期对象传递给Bean工厂,并添加到三级缓存中
addSingletonFactory(beanName, () -> getEarlyBeanReference(beanName, mbd, bean));
}
Object exposedObject = bean;
try {
// 属性赋值操作
populateBean(beanName, mbd, instanceWrapper);
......
}
......
}
......
}
上面代码,Spring实例化了BeanA,然后往三级缓存中添加了BeanA的工厂对象,根据前面getEarlyBeanReference方法的源码我们可以知道,在不存在AOP代理的情况下,该方法直接返回原始BeanA对象。所以通过该工厂方法创建的BeanA对象仅仅是进行了实例化操作,属性还未被赋值,换句话说,该工厂用于提前曝光BeanA实例。
接着调用populateBean方法对BeanA属性赋值,赋值过程发现BeanA依赖于BeanB,所以Spring重复以上步骤创建BeanB。创建过程中同样会遇到populateBean方法对BeanB属性赋值,赋值过程中发现BeanB依赖于BeanA,于是Spring又回头创建BeanA,不过这时候情况就开始不一样了!!
doGetBean方法内部从三级缓存中获取BeanA对象时,三级缓存内容如下:
可以看到一级缓存和二级缓存没有什么不一样,但三级缓存中已经存在BeanA和BeanB的工厂对象了!
所以此时getSingleton(String beanName, boolean allowEarlyReference)方法内的逻辑如下:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
......
@Nullable
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
Object singletonObject = this.singletonObjects.get(beanName);
// 一级缓存中没有BeanA,并且BeanA正在创建中
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
singletonObject = this.earlySingletonObjects.get(beanName);
// 二级缓存中也没有BeanA
if (singletonObject == null && allowEarlyReference) {
synchronized (this.singletonObjects) {
// 在锁内重新从一级缓存中往下查找
singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null) {
// 从三级缓存中取出目标BeanA的工厂对象
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
// 工厂对象不为空,调用getObject方法获取前面提前曝光的BeanA早期实例
singletonObject = singletonFactory.getObject();
// 将BeanA早期实例放到二级缓存中
this.earlySingletonObjects.put(beanName, singletonObject);
// 删除对应的三级缓存
this.singletonFactories.remove(beanName);
}
}
}
}
}
}
// 返回BeanA早期实例
return singletonObject;
}
......
此时查看二级缓存:
可以看到,BeanA确实只是早期实例,属性BeanB还未被赋值呢。
随后BeanB在属性填充的时候获取到了BeanA早期实例,完成属性填充、初始化等后续操作,BeanB创建完毕。BeanB完整创建完毕后,BeanA随之也完成属性填充、初始化等后续操作,BeanA也创建完毕,循环依赖得以解决。
BeanB虽然获取到的是BeanA的早期对象,但当BeanA完整创建完毕后,BeanB里的BeanA也将会是完整的,因为指针指向的都是同一个BeanA地址。
画个图总结上面的过程(可右键选择新标签页中打开图片):
普通Bean与代理Bean
普通Bean和代理Bean之间的循环依赖和上面过程差不多,不过细节上有些许差异。
删除上面创建的CircularReferenceTest类。为了模拟AOP代理的情况,我们需要引入AOP依赖:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
然后修改Boot入口类:
@SpringBootApplication
public class MyApplication {
public static void main(String[] args) {
ConfigurableApplicationContext context = SpringApplication.run(MyApplication.class, args);
BeanA beanA = context.getBean(BeanA.class);
BeanB beanB = context.getBean(BeanB.class);
BeanB beanBInBeanA = beanA.getBeanB();
BeanA beanAInBeanB = beanB.getBeanA();
System.out.println("BeanA是否为代理对象:" + AopUtils.isAopProxy(beanA));
System.out.println("BeanB是否为代理对象:" + AopUtils.isAopProxy(beanB));
System.out.println("beanAInBeanB是否为代理对象:" + AopUtils.isAopProxy(beanAInBeanB));
System.out.println(beanB == beanBInBeanA);
System.out.println(beanA == beanAInBeanB);
}
}
@Component
class BeanA {
@Autowired
private BeanB beanB;
public BeanB getBeanB() {
return beanB;
}
public void setBeanB(BeanB beanB) {
this.beanB = beanB;
}
}
@Component
class BeanB {
@Autowired
private BeanA beanA;
public BeanA getBeanA() {
return beanA;
}
public void setBeanA(BeanA beanA) {
this.beanA = beanA;
}
}
@Aspect
@Component
class MyAspect {
@Pointcut("execution(public * cc.mrbird.BeanA.getBeanB())")
public void pointcut() {
}
@Before("pointcut()")
public void onBefore(JoinPoint joinPoint) {
System.out.println("onBefore:" + joinPoint.getSignature().getName() + "方法开始执行");
}
}
因为MyAspect切面类的存在,BeanA将会是个代理类,而BeanB则是普通Bean,程序输出如下:
onBefore:getBeanB方法开始执行
BeanA是否为代理对象:true
BeanB是否为代理对象:false
beanAInBeanB是否为代理对象:true
true
true
假设容器先创建BeanA,过程和上面的例子一致,属性填充时,发现BeanA依赖BeanB,然后Spring开始创建BeanB。创建BeanB时候又发现其依赖BeanA,这时三级缓存中已经存在BeanA的工厂对象了,所以直接通过该工厂对象获取BeanA的早期实例:
public class DefaultSingletonBeanRegistry extends SimpleAliasRegistry implements SingletonBeanRegistry {
......
@Nullable
protected Object getSingleton(String beanName, boolean allowEarlyReference) {
Object singletonObject = this.singletonObjects.get(beanName);
// 一级缓存中没有BeanA,并且BeanA正在创建中
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
singletonObject = this.earlySingletonObjects.get(beanName);
// 二级缓存中也没有BeanA
if (singletonObject == null && allowEarlyReference) {
synchronized (this.singletonObjects) {
// 在锁内重新从一级缓存中往下查找
singletonObject = this.singletonObjects.get(beanName);
if (singletonObject == null) {
singletonObject = this.earlySingletonObjects.get(beanName);
if (singletonObject == null) {
// 从三级缓存中取出目标BeanA的工厂对象
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
// 工厂对象不为空,调用getObject方法获取前面提前曝光的BeanA早期实例
singletonObject = singletonFactory.getObject();
// 将BeanA早期实例放到二级缓存中
this.earlySingletonObjects.put(beanName, singletonObject);
// 删除对应的三级缓存
this.singletonFactories.remove(beanName);
}
}
}
}
}
}
// 返回BeanA早期实例
return singletonObject;
}
......
singletonFactory.getObject()实际实现为lambda表达式() -> getEarlyBeanReference(beanName, mbd, bean),getEarlyBeanReference方法源码:
protected Object getEarlyBeanReference(String beanName, RootBeanDefinition mbd, Object bean) {
Object exposedObject = bean;
if (!mbd.isSynthetic() && hasInstantiationAwareBeanPostProcessors()) {
for (SmartInstantiationAwareBeanPostProcessor bp : getBeanPostProcessorCache().smartInstantiationAware) {
exposedObject = bp.getEarlyBeanReference(exposedObject, beanName);
}
}
return exposedObject;
}
在引入AOP依赖后,容器中将会有一个SmartInstantiationAwareBeanPostProcessor接口的实现类AbstractAutoProxyCreator,用于创建AOP代理,所以上面getEarlyBeanReference方法里的bp.getEarlyBeanReference(exposedObject, beanName)逻辑实际上为AbstractAutoProxyCreator实现的getEarlyBeanReference方法:
public abstract class AbstractAutoProxyCreator extends ProxyProcessorSupport
implements SmartInstantiationAwareBeanPostProcessor, BeanFactoryAware {
@Override
public Object getEarlyBeanReference(Object bean, String beanName) {
// 生成缓存Key
Object cacheKey = getCacheKey(bean.getClass(), beanName);
// 放入earlyProxyReferences集合中,标识BeanA为早期代理对象
this.earlyProxyReferences.put(cacheKey, bean);
// 在这个例子中,BeanA将被包装为代理对象
return wrapIfNecessary(bean, beanName, cacheKey);
}
}
所以BeanB从三级缓存中获取到的为代理后的BeanA实例:
BeanB创建完毕后,BeanA属性填充操作随之结束。
通过深入理解Spring-AOP原理对AOP的学习我们知道,代理对象是在后置处理BeanPostProcessor的postProcessAfterInitialization方法内完成的,而该方法的调用时机为Bean属性填充后的初始化操作时,所以在BeanA属性填充操作结束时,BeanA还只是一个普通对象,而BeanB里的BeanA已经是代理对象了。
继续BeanA的创建过程,BeanA属性填充完后,执行initializeBean(beanName, exposedObject, mbd)方法进行初始化操作:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
implements AutowireCapableBeanFactory {
......
protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
......
Object exposedObject = bean;
try {
// 属性赋值操作
populateBean(beanName, mbd, instanceWrapper);
// 初始化操作
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
......
}
......
}
我们主要关注初始化操作阶段执行动态代理的后置处理方法过程:
public abstract class AbstractAutoProxyCreator extends ProxyProcessorSupport
implements SmartInstantiationAwareBeanPostProcessor, BeanFactoryAware {
......
@Override
public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) {
if (bean != null) {
Object cacheKey = getCacheKey(bean.getClass(), beanName);
// 在BeanB填充属性时,BeanA已经被放入到earlyProxyReferences集合中了
// 所以该if不成立,直接跳过,避免二次代理
if (this.earlyProxyReferences.remove(cacheKey) != bean) {
return wrapIfNecessary(bean, beanName, cacheKey);
}
}
// 所以这里返回的还是BeanA原始对象,并非代理对象
return bean;
}
......
到这里BeanA依旧是普通对象,继续查看doCreateBean方法的后续逻辑:
public abstract class AbstractAutowireCapableBeanFactory extends AbstractBeanFactory
implements AutowireCapableBeanFactory {
......
protected Object doCreateBean(String beanName, RootBeanDefinition mbd, @Nullable Object[] args)
throws BeanCreationException {
......
// 原始BeanA赋值给exposedObject
Object exposedObject = bean;
try {
// 属性赋值操作
populateBean(beanName, mbd, instanceWrapper);
// 初始化操作,通过上面分析,此时返回的还是原始的BeanA对象
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
......
if (earlySingletonExposure) {
// 从缓存中获取BeanA,此时二级缓存中已经存在BeanA的代理对象了,所以
// 这里earlySingletonReference为BeanA的代理对象(如下图)
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
// exposedObject和bean相等,因为BeanA并未在初始化的时候被二次代理
if (exposedObject == bean) {
// 这里将代理对象BeanA赋值给exposedObject
exposedObject = earlySingletonReference;
}
......
}
}
......
// 最终返回的exposedObject对象为从二级缓存中获取到的BeanA代理对象
return exposedObject;
}
......
}
到这里,无论是BeanB里的BeanA,还是IOC容器中的BeanA,都是代理后的BeanA了。
画张图总结下上面的过程(可右键选择新标签页中打开图片):
总结
上面的例子都是基于属性注入的情况,假如存在构造器注入情况下的循环依赖,Spring将没办法解决。这是因为对象的提前曝光时机发生在对象实例化之后,而构造器注入时机为对象实例化时,所以此时还未进行提前曝光操作,循环依赖也就没办法解决了,比如下面这种情况:
@SpringBootApplication
public class MyApplication {
public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);
}
}
@Component
class BeanA {
private BeanB beanB;
public BeanA(BeanB beanB) {
this.beanB = beanB;
}
public BeanB getBeanB() {
return beanB;
}
public void setBeanB(BeanB beanB) {
this.beanB = beanB;
}
}
@Component
class BeanB {
private BeanA beanA;
public BeanB(BeanA beanA) {
this.beanA = beanA;
}
public BeanA getBeanA() {
return beanA;
}
public void setBeanA(BeanA beanA) {
this.beanA = beanA;
}
}
程序将抛出如下异常:
***************************
APPLICATION FAILED TO START
***************************
Description:
The dependencies of some of the beans in the application context form a cycle:
┌─────┐
| beanA defined in file [/Users/mrbird/idea workspace/aop-deep-learn/target/classes/cc/mrbird/BeanA.class]
↑ ↓
| beanB defined in file [/Users/mrbird/idea workspace/aop-deep-learn/target/classes/cc/mrbird/BeanB.class]
└─────┘
此外,这里讨论了普通Bean与普通Bean之间的循环依赖,代理Bean与普通Bean之间的循环依赖,实际情况还可能存在工厂Bean与普通Bean、代理Bean之间的循环依赖,这种情况比较复杂,本文不讨论,因为就理解Spring解决循环依赖的思想而言,上面两种情况搞清楚了就OK了。