1. 窗口函数
1.1 窗口函数概念及基本的使用方法
窗口函数也称为OLAP函数。OLAP 是OnLine Analytical Processing (联机分析处理)的简称,意思是对数据库数据进行实时分析处理。
与此相对的还有一个OLTP(OnLine Transaction Processing, 联机事务处理)。OLTP侧重事务,OLAP侧重分析。
【拓展资料1】
从功能角度来看,OLTP负责基本业务的正常运转,而业务数据积累时所产生的价值信息则被OLAP不断呈现,企业高层通过参考这些信息会不断调整经营方针,也会促进基础业务的不断优化,这是OLTP与OLAP最根本的区别。
图文引用自:https://baijiahao.baidu.com/s?id=1611554859260686629&wfr=spider&for=pc
【拓展资料2】
OLTP: real-time, limited data accessed, random data access, sequential processing, querying
OLAP: long running, entire data set accessed, sequential data access, parallel processing, batch processing
图文引用自:http://tinkerpop.apache.org/docs/current/reference/#graphcomputer
为了便于理解,将OLAP函数称之为窗口函数。常规的SELECT语句都是对整张表进行查询,而窗口函数可以让我们有选择的去取某一部分数据进行汇总、计算和排序。
窗口函数的通用形式:
<窗口函数> OVER ([PARTITION BY <列名>]
ORDER BY <排序用列名>)
其中,[PARTITION BY <列名>]
这部分可以省略。
窗口函数最关键的是搞明白关键字**PARTITON BY**
和**ORDER BY**
的作用。PARTITON BY
是用来分组,即选择要看哪个窗口,类似于GROUP BY 子句的分组功能,但是PARTITION BY
子句并不具备GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。ORDER BY
是用来排序,即决定窗口内,是按那种规则(字段)来排序的。
举了栗子
SELECT product_name
,product_type
,sale_price
,RANK() OVER (PARTITION BY product_type
ORDER BY sale_price) AS ranking
FROM product;
教程里面的句末都漏了分号
得到的结果是:
我们先忽略生成的新列 - [ranking],看下原始数据在PARTITION BY 和 ORDER BY 关键字的作用下发生了什么变化。
- PARTITION BY 能够设定窗口对象范围。本例中,为了按照商品种类进行排序,我们指定了product_type。即一个商品种类就是一个小的“窗口”。
- ORDER BY 能够指定按照哪一列、何种顺序进行排序。为了按照销售单价的升序进行排列,我们指定了sale_price。此外,窗口函数中的ORDER BY与SELECT语句末尾的ORDER BY一样,可以通过关键字
ASC
/DESC
来指定升序/降序。省略该关键字时会默认按照ASC,也就是升序进行排序。本例中就省略了上述关键字 。
(最终的效果是对每种商品类别分别按商品价格进行排名)
2 窗口函数种类
大致来说,窗口函数可以分为两类。
一是 将SUM、MAX、MIN等聚合函数用在窗口函数中。
二是 RANK、DENSE_RANK等排序用的专用窗口函数。
2.1 专用窗口函数
- RANK函数
计算排序时,如果存在相同位次的记录,则会跳过之后的位次。(跳同位次)
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……
- DENSE_RANK函数
同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。(不跳同位次)
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……
- ROW_NUMBER函数
赋予唯一的连续位次。(位次连续且唯一)
例)有 3 条记录排在第 1 位时:1 位、2 位、3 位、4 位
运行以下代码:
SELECT product_name
,product_type
,sale_price
,RANK() OVER (ORDER BY sale_price) AS ranking
,DENSE_RANK() OVER (ORDER BY sale_price) AS dense_ranking
,ROW_NUMBER() OVER (ORDER BY sale_price) AS row_num
FROM product;
执行结果:
2.2 聚合函数在窗口函数上的使用
聚合函数在开窗函数中的使用方法和之前的专用窗口函数一样,只是出来的结果是一个累计的聚合函数值。
运行以下代码:
SELECT product_id
,product_name
,sale_price
,SUM(sale_price) OVER (ORDER BY product_id) AS current_sum
,AVG(sale_price) OVER (ORDER BY product_id) AS current_avg
FROM product;
执行结果:
current_sum列的计算示意图:(圆珠笔的价格不一样,是因为在task03进行更新过。下同。)
current_avg列的计算示意图
可以看出,聚合函数结果是,按我们指定的排序,这里是product_id,当前所在行及之前所有的行的合计或均值。即累计到当前行的聚合**(这句话是在窗口函数使用聚合函数的精髓)**。
3. 窗口函数的的应用 - 计算移动平均
在上面提到,聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。 实际上,还可以指定更加详细的汇总范围。该汇总范围成为框架(frame)。
语法:
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS n PRECEDING )
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS BETWEEN n PRECEDING AND n FOLLOWING)
PRECEDING(“之前”)
, 将框架指定为 “截止到之前 n 行”,加上自身行FOLLOWING(“之后”)
, 将框架指定为 “截止到之后 n 行”,加上自身行BETWEEN 1 PRECEDING AND 1 FOLLOWING
,将框架指定为 “之前1行” + “之后1行” + “自身”
示例代码:
SELECT product_id
,product_name
,sale_price
,AVG(sale_price) OVER (ORDER BY product_id
ROWS 2 PRECEDING) AS moving_avg
,AVG(sale_price) OVER (ORDER BY product_id
ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING) AS moving_avg
FROM product;
执行结果:
结果分析:(注意观察框架的范围)ROWS 2 PRECEDING
这部分对应的框架范围如下:
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
这部分对应的框架范围如下:
3.1 窗口函数适用范围和注意事项
原则上,窗口函数只能在SELECT子句中使用。
窗口函数OVER 中的ORDER BY 子句并不会影响最终结果的排序。其只是用来决定窗口函数按何种顺序计算。
4 GROUPING运算符
4.1 ROLLUP - 计算合计及小计
常规的GROUP BY 只能得到每个分类的小计,有时候还需要计算分类的合计,可以用 **ROLLUP关键字**
。
ROLLUP的一个使用例子:
SELECT product_type
,regist_date
,SUM(sale_price) AS sum_price
FROM product
GROUP BY product_type, regist_date WITH ROLLUP;
查询结果:
这里ROLLUP
对product_type,regist_date两列进行合计汇总。结果实际上有三层聚合,如下图“模块3”是常规的 GROUP BY 的结果,需要注意的是“衣服”有个“注册日期”为空的,这是本来数据就存在日期为空的,不是对衣服类别的合计; 模块2和1是 ROLLUP 带来的合计,模块2是对产品种类的合计,模块1是对全部数据的总计。
ROLLUP 可以对多列进行汇总求小计和合计。
5. 练习题
5.1
请说出针对本章中使用的 product(商品)表执行如下 SELECT 语句所能得到的结果。
SELECT product_id
,product_name
,sale_price
,MAX(sale_price) OVER (ORDER BY product_id) AS Current_max_price
FROM product;
回答:
根据product_id排序,计算累计到当前行的最大sale_price。
验证:
5.2
继续使用product表,计算出按照登记日期(regist_date)升序进行排列的各日期的销售单价(sale_price)的总额。排序是需要将登记日期为NULL 的“运动 T 恤”记录排在第 1 位(也就是将其看作比其他日期都早)
回答:
SELECT product_id
,product_name
,regist_date
,SUM(sale_price) OVER (partition by regist_date) AS sum_price_by_date
FROM product
ORDER BY -ISNULL(regist_date), regist_date;
5.3
思考题
① 窗口函数不指定PARTITION BY的效果是什么?
回答:如果不指定PARTITION BY的话,窗口函数的操作窗口就是整个表(即所有记录都算为同一个分组)。比如rank会对指定的列进行排序,不会再分成多组分别进行排序。
② 为什么说窗口函数只能在SELECT子句中使用?实际上,在ORDER BY 子句使用系统并不会报错。
回答:窗口函数会对整个表进行分组,而 WHERE子句 和 HAVING子句 分别是放的记录和字段筛选条件、GROUP BY子句放的是分组依据,都不适合把窗口函数放到其中使用。而ORDER BY子句则是对SELECT子句中的结果进行操作,操作的是整个结果表,所以可以使用窗口函数,但是窗口函数的返回结果只作为ORDER BY子句的排序依据,并不能返回期望的结果。