解决思路
滑动窗口+哈希
本问题要求我们返回字符串S 中包含字符串T的全部字符的最小窗口。我们称包含TT的全部字母的窗口为可行窗口。
可以用简单的滑动窗口法来解决本问题。
在滑动窗口类型的问题中都会有两个指针。一个用于延伸现有窗口的 right指针,和一个用于收缩窗口的left 指针。在任意时刻,只有一个指针运动,而另一个保持静止。
本题的解法很符合直觉。我们通过移动right指针不断扩张窗口。当窗口包含全部所需的字符后,如果能收缩,我们就收缩窗口直到得到最小窗口。
答案是最小的可行窗口。
举个例子, S = “ABAACBAB”,T = “ABC”。则问题答案是 “ACB” ,下图是可行窗口中的一个。
算法
初始,left指针和right指针都指向S的第一个元素.
将 right 指针右移,扩张窗口,直到得到一个可行窗口,亦即包含T的全部字母的窗口。
得到可行的窗口后,将left 指针逐个右移,若得到的窗口依然可行,则更新最小窗口大小。
若窗口不再可行,则跳转至 2。
重复以上步骤,直到遍历完全部窗口。返回最小的窗口。
class Solution {
public String minWindow(String s, String t) {
if (s.length() == 0 || t.length() == 0) {
return "";
}
// Dictionary which keeps a count of all the unique characters in t.
Map<Character, Integer> dictT = new HashMap<Character, Integer>();
for (int i = 0; i < t.length(); i++) {
int count = dictT.getOrDefault(t.charAt(i), 0);
dictT.put(t.charAt(i), count + 1);
}
// Number of unique characters in t, which need to be present in the desired window.
int required = dictT.size();
// Left and Right pointer
int l = 0, r = 0;
// formed is used to keep track of how many unique characters in t
// are present in the current window in its desired frequency.
// e.g. if t is "AABC" then the window must have two A's, one B and one C.
// Thus formed would be = 3 when all these conditions are met.
int formed = 0;
// Dictionary which keeps a count of all the unique characters in the current window.
Map<Character, Integer> windowCounts = new HashMap<Character, Integer>();
// ans list of the form (window length, left, right)
int[] ans = {-1, 0, 0};
while (r < s.length()) {
// Add one character from the right to the window
char c = s.charAt(r);
int count = windowCounts.getOrDefault(c, 0);
windowCounts.put(c, count + 1);
// If the frequency of the current character added equals to the
// desired count in t then increment the formed count by 1.
if (dictT.containsKey(c) && windowCounts.get(c).intValue() == dictT.get(c).intValue()) {
formed++;
}
// Try and co***act the window till the point where it ceases to be 'desirable'.
while (l <= r && formed == required) {
c = s.charAt(l);
// Save the smallest window until now.
if (ans[0] == -1 || r - l + 1 < ans[0]) {
ans[0] = r - l + 1;
ans[1] = l;
ans[2] = r;
}
// The character at the position pointed by the
// `Left` pointer is no longer a part of the window.
windowCounts.put(c, windowCounts.get(c) - 1);
if (dictT.containsKey(c) && windowCounts.get(c).intValue() < dictT.get(c).intValue()) {
formed--;
}
// Move the left pointer ahead, this would help to look for a new window.
l++;
}
// Keep expanding the window once we are done co***acting.
r++;
}
return ans[0] == -1 ? "" : s.substring(ans[1], ans[2] + 1);
}
}