1、Hystrix断路器
1、概述
1、分布式系统面临的问题
复杂分布式体系结构中的应用程序有数十个依赖关系,每个依赖关系在某些时候将不可避免地失败。
服务雪崩
多个微服务之间调用的时候,假设微服务A调用微服务B和微服务C,微服务B和微服务C又调用其它的微服务,这就是所谓的“扇出”。如果扇出的链路上某个微服务的调用响应时间过长或者不可用,对微服务A的调用就会占用越来越多的系统资源,进而引起系统崩溃,所谓的“雪崩效应”.
对于高流量的应用来说,单一的后端依赖可能会导致所有服务器上的所有资源都在几秒钟内饱和。比失败更糟糕的是,这些应用程序还可能导致服务之间的延迟增加,备份队列,线程和其他系统资源紧张,导致整个系统发生更多的级联故障。这些都表示需要对故障和延迟进行隔离和管理,以便单个依赖关系的失败,不能取消整个应用程序或系统。
所以,
通常当你发现一个模块下的某个实例失败后,这时候这个模块依然还会接收流量,然后这个有问题的模块还调用了其他的模块,这样就会发生级联故障,或者叫雪崩。
2、简介
- Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时、异常等,Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。
“断路器”本身是一种开关装置,当某个服务单元发生故障之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个符合预期的、可处理的备选响应(FallBack),而不是长时间的等待或者抛出调用方无法处理的异常,这样就保证了服务调用方的线程不会被长时间、不必要地占用,从而避免了故障在分布式系统中的蔓延,乃至雪崩。
3、作用
服务降级
- 服务熔断
- 服务限流
-
4、官网资料
https://github.com/Netflix/Hystrix/wiki/How-To-Use
5、Hystrix官宣,停更进维
被动修复bugs
- 不再接受合并请求
- 不再发布新版本
2、Hystrix重要概念
1、服务降级
服务器忙,请稍后再试,不让客户端等待并立刻返回一个友好提示,fallback
1、哪些情况会出发降级
程序运行异常
- 超时
- 服务熔断触发服务降级
-
2、服务熔断
类比保险丝达到最大服务访问后,直接拒绝访问,拉闸限电,然后调用服务降级的方法并返回友好提示
就是保险丝
秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行
3、hystrix案例
1、创建cloud-provider-hystrix-payment8001
1、配置pom.xml
```xml <?xml version=”1.0” encoding=”UTF-8”?> <project xmlns=”http://maven.apache.org/POM/4.0.0“
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<artifactId>cloud2020</artifactId> <groupId>com.daijunyi</groupId> <version>1.0-SNAPSHOT</version>
4.0.0 cloud-provider-hystrix-payment8001 org.springframework.cloud spring-cloud-starter-netflix-hystrix org.springframework.cloud spring-cloud-starter-netflix-eureka-client org.springframework.boot spring-boot-starter-web org.springframework.boot spring-boot-starter-actuator com.daijunyi cloud-api-commons ${project.version} org.springframework.boot spring-boot-devtools runtime true org.projectlombok lombok true org.springframework.boot spring-boot-starter-test test
<a name="GILrM"></a>
#### 2、配置yaml
```yaml
server:
port: 8001
spring:
application:
name: cloud-provider-hystrix-payment
eureka:
instance:
instance-id: payment:8001
client:
# 表示把自己注册进eureka
register-with-eureka: true
# 刷新相关注册进eureka里面的服务列表
fetch-registry: true
service-url:
defaultZone: http://www.eureka7001.com:7001/eureka,http://www.eureka7002.com:7002/eureka
3、主启动类
package com.daijunyi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
@SpringBootApplication
@EnableEurekaClient
public class HystrixPayment8001 {
public static void main(String[] args) {
SpringApplication.run(HystrixPayment8001.class,args);
}
}
4、业务类相关
- service ```java package com.daijunyi.service;
import org.springframework.stereotype.Service;
import java.util.concurrent.TimeUnit;
@Service public class PaymentService { /**
* 正常访问,一切OK
* @param id
* @return
*/
public String paymentInfo_OK(Integer id)
{
return "线程池:"+Thread.currentThread ().getName()+"paymentInfo_OK,id: "+id+"\t"+"O(∩_∩)O";
}
/**
* 超时访问,演示降级
* @param id
* @return
*/
public String paymentInfo_TimeOut(Integer id)
{
try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); }
return "线程池:"+Thread.currentThread ().getName()+"paymentInfo_TimeOut,id: "+id+"\t"+"O(∩_∩)O,耗费3秒";
}
}
- controller
```java
package com.daijunyi.controller;
import com.daijunyi.service.PaymentService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
@RestController
@Slf4j
public class PaymentController
{
@Autowired
private PaymentService paymentService;
@Value("${server.port}")
private String serverPort;
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id)
{
String result = paymentService.paymentInfo_OK(id);
log.info("****result: "+result);
return result;
}
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id) throws InterruptedException
{
String result = paymentService.paymentInfo_TimeOut(id);
log.info("****result: "+result);
return result;
}
}
5、测试
- 测试地址
- http://localhost:8001/payment/hystrix/timeout/2
http://localhost:8001/payment/hystrix/ok/2
2、高并发ApacheJmeter测试
1、ApacheJmeter下载
http://jmeter.apache.org/download_jmeter.cgi
2、下载之后解压缩
放在合适目录
- 运行bin目录下的
- ApacheJmeter.jar
- 或Jemter.sh
-
3、创建测试组
200线程循环100次
4、添加http请求取样
5、测试结论
- 两个都在自己转圈圈
- tomcat的默认的工作线程数被打满了,没有多余的线程来分解压力和处理。
- tomcat的默认核心线程数是10,最大线程数是200,所以我们这里用了200个并发一起来,tomcat扛不住了
上面还是服务提供者8001自己测试,假如此时外部的消费者80也来访问,
那消费者只能干等,最终导致消费端80不满意,服务端8001直接被拖死
3、接着再创建一个消费端cloud-consumer-feign-hystrix-order80
1、配置pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>cloud2020</artifactId>
<groupId>com.daijunyi</groupId>
<version>1.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>cloud-consumer-feign-hystrix-order80</artifactId>
<dependencies>
<!--openfeign-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<!--hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<!--eureka client-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<!-- 引入自己定义的api通用包,可以使用Payment支付Entity -->
<dependency>
<groupId>com.daijunyi</groupId>
<artifactId>cloud-api-commons</artifactId>
<version>${project.version}</version>
</dependency>
<!--web-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<!--一般基础通用配置-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
</project>
2、配置yaml
server:
port: 80
spring:
application:
name: cloud-consumer-feign-hystrix-order
eureka:
client:
#把自己注册进eureka
register-with-eureka: true
# 指示此客户端是否应从 eureka * 服务器获取 eureka 注册表信息
fetch-registry: true
service-url:
defaultZone: http://www.eureka7001.com:7001/eureka,http://www.eureka7002.com:7002/eureka
3、主启动类
package com.daijunyi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;
import org.springframework.cloud.openfeign.EnableFeignClients;
@SpringBootApplication
@EnableEurekaClient //Eureka集成的客户端功能打开
@EnableFeignClients //开启OpenFeign的负载均衡服务调用
public class FeignHystrixOrder80 {
public static void main(String[] args) {
SpringApplication.run(FeignHystrixOrder80.class,args);
}
}
4、业务
- service ```java package com.daijunyi.service;
import org.springframework.cloud.openfeign.FeignClient; import org.springframework.stereotype.Service; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.PathVariable;
@Service @FeignClient(name = “CLOUD-PROVIDER-HYSTRIX-PAYMENT”) public interface PaymentService {
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id);
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id);
}
- controller
```java
package com.daijunyi.controller;
import com.daijunyi.service.PaymentService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
@RestController
@Slf4j
public class PaymentController {
@Autowired
private PaymentService paymentService;
@GetMapping("/consumer/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id){
return paymentService.paymentInfo_OK(id);
}
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id){
return paymentService.paymentInfo_TimeOut(id);
}
}
5、测试
http://localhost/consumer/payment/hystrix/ok/2
6、高并发测试
- 开启200个线程循环100次去压8001
- 接着我们再开启80去请求
6、故障现象和导致原因
- 8001同一层次的其它接口服务被困死,因为tomcat线程池里面的工作线程已经被挤占完毕
-
7、上诉结论
正因为有上述故障或不佳表现才有我们的降级/容错/限流等技术诞生
8、如何解决?解决的要求
超时导致服务器变慢(转圈)
- 超时不再等待
- 出错(宕机或程序运行出错)
- 出错要有兜底
解决
降级配置
- @HystrixCommand
8001先从自身找问题
yaml配置
feign: hystrix: enabled: true
主启动类激活
- @EnableCircuitBreaker
@SpringBootApplication @EnableEurekaClient @EnableCircuitBreaker // 启用断路器 public class HystrixPayment8001 { public static void main(String[] args) { SpringApplication.run(HystrixPayment8001.class,args); } }
- @EnableCircuitBreaker
PaymentService进行fallback
- HystrixCommandProperties 进行查找相关属性
- @HystrixCommand 激活服务降级 ```java package com.daijunyi.service;
import com.netflix.hystrix.contrib.javanica.annotation.HystrixCommand; import com.netflix.hystrix.contrib.javanica.annotation.HystrixProperty; import lombok.extern.slf4j.Slf4j; import org.springframework.stereotype.Service;
import java.util.concurrent.TimeUnit;
@Service @Slf4j public class PaymentService { /**
* 正常访问,一切OK
* @param id
* @return
*/
public String paymentInfo_OK(Integer id)
{
return "线程池:"+Thread.currentThread ().getName()+"paymentInfo_OK,id: "+id+"\t"+"O(∩_∩)O";
}
/**
* 超时访问,演示降级
* @param id
* @return
*/
@HystrixCommand(fallbackMethod = "paymentInfo_TimeOut_fallback",commandProperties = {
@HystrixProperty(name = "execution.isolation.thread.timeoutInMilliseconds",value = "3000")
})
public String paymentInfo_TimeOut(Integer id)
{
log.info("运行:paymentInfo_TimeOut");
try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); }
return "线程池:"+Thread.currentThread ().getName()+"paymentInfo_TimeOut,id: "+id+"\t"+"O(∩_∩)O,耗费1秒";
}
public String paymentInfo_TimeOut_fallback(Integer id){
log.info("运行错误:paymentInfo_TimeOutFallback");
return "当前业务忙,请稍后重试";
}
}
<a name="iQgop"></a>
#### 2、对80服务器也进行降级处理
- 80订单微服务,也可以更好的保护自己,自己也依样画葫芦进行客户端降级保护
- (1)配置yaml
```yaml
feign:
hystrix:
enabled: true
- (2)修改主启动类
- @EnableCircuitBreaker ```java package com.daijunyi;
import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker; import org.springframework.cloud.netflix.eureka.EnableEurekaClient; import org.springframework.cloud.openfeign.EnableFeignClients;
@SpringBootApplication @EnableEurekaClient @EnableFeignClients @EnableCircuitBreaker public class FeignHystrixOrder80 {
public static void main(String[] args) {
SpringApplication.run(FeignHystrixOrder80.class,args);
}
}
- (3)修改业务类
- @HystrixCommand
- execution.isolation.thread.timeoutInMilliseconds 最长2秒
<a name="rkbDn"></a>
#### 3、目前问题
- 每个业务方法对应一个兜底的方法,代码膨胀
- 统一和自定义的分开
<a name="J8uHO"></a>
#### 4、解决问题
<a name="BWka1"></a>
##### 1、每个方法配置一个???膨胀
- @DefaultProperties(defaultFallback = "")
- 修改全局配置
```java
@RestController
@Slf4j
@DefaultProperties(defaultFallback = "fallback_global")
public class PaymentController {
@Autowired
private PaymentService paymentService;
@GetMapping("/consumer/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id){
return paymentService.paymentInfo_OK(id);
}
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
@HystrixCommand
public String paymentInfo_TimeOut(@PathVariable("id") Integer id){
return paymentService.paymentInfo_TimeOut(id);
}
public String fallback_global(){
return "运行超时";
}
}
5、和业务逻辑混一起???混乱
- 服务降级,客户端去调用服务端,碰上服务端宕机或关闭
- 本次案例服务降级处理是在客户端80实现完成的,与服务端8001没有关系,只需要为Feign客户端定义的接口添加一个服务降级处理的实现类即可实现解耦
- 未来我们要面对的异常
import org.springframework.stereotype.Component;
@Component public class PaymentServiceFallback implements PaymentService {
private final String warnString = "服务器忙";
@Override
public String paymentInfo_OK(Integer id) {
return warnString;
}
@Override
public String paymentInfo_TimeOut(Integer id) {
return warnString;
}
}
<a name="VwkSw"></a>
##### 2、修改PaymentService
```java
package com.daijunyi.service;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.stereotype.Service;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
@Service
@FeignClient(name = "CLOUD-PROVIDER-HYSTRIX-PAYMENT",fallback = PaymentServiceFallback.class)
public interface PaymentService {
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id);
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id);
}
3、如果要配置默认超时时间修改yaml
- 默认的ribbon超时是1秒
默认的服务器降级超时时间也是1秒
# 此次如果开启了服务降级先得对ribbon进行修改时间,至少要比服务降级的时间长 ribbon: ReadTimeout: 60000 ConnectTimeout: 60000 #开启服务降级功能 feign: hystrix: enabled: true # 修改hystrix服务降级的超时时间 hystrix: command: default: execution: isolation: thread: timeoutInMilliseconds: 2000
6、服务熔断
1、断路器是什么
一句话就是家里的保险丝
熔断机制概述
- 熔断机制是应对雪崩效应的一种微服务链路保护机制。当扇出链路的某个微服务出错不可用或者响应时间太长时,
- 会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。
- 当检测到该节点微服务调用响应正常后,恢复调用链路。
在Spring Cloud框架里,熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,
当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制。熔断机制的注解是@HystrixCommand。2、案例
修改cloud-provider-hystrix-payment8001
PaymentService添加如下代码
//=========服务熔断 @HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = { //熔断开关 @HystrixProperty(name = "circuitBreaker.enabled",value = "true"), // 该属性用来设置在滚动时间窗中,断路器熔断的最小请求数。例如,默认该值为 20 的时候, // 如果滚动时间窗(默认10秒)内仅收到了19个请求,即使这19个请求都失败了,断路器也不会打开。 @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"), // 该属性用来设置当断路器打开之后的休眠时间窗。休眠时间窗结束之后, // 会将断路器置为 "半开" 状态,尝试熔断的请求命令,如果依然失败就将断路器继续设置为 "打开" 状态, // 如果成功就设置为 "关闭" 状态。 @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"), // 该属性用来设置在滚动时间窗中,表示在滚动时间窗中,在请求数量超过 // circuitBreaker.requestVolumeThreshold 的情况下,如果错误请求数的百分比超过50, // 就把断路器设置为 "打开" 状态,否则就设置为 "关闭" 状态。 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"), }) public String paymentCircuitBreaker(@PathVariable("id") Integer id) { if(id < 0) { throw new RuntimeException("******id 不能负数"); } String serialNumber = IdUtil.simpleUUID (); return Thread.currentThread ().getName()+"\t"+"调用成功,流水号: " + serialNumber; } public String paymentCircuitBreaker_fallback(@PathVariable("id") Integer id) { return "id 不能负数,请稍后再试,/(ㄒoㄒ)/~~ id: " +id; }
PaymentController添加代码
@GetMapping("/payment/circuit/{id}") public String paymentCircuitBreaker(@PathVariable("id") Integer id) { String result = paymentService.paymentCircuitBreaker(id); log.info("****result: "+result); return result; }
测试
- 正常调用http://localhost:8001/payment/circuit/1
- 10秒内调用10次以上http://localhost:8001/payment/circuit/-1
- 触发熔断
- 再调用http://localhost:8001/payment/circuit/1
- 以熔断
- 调用正常也变成错了
- 再过10秒调用http://localhost:8001/payment/circuit/1
- 就正常了
7、熔断原理(小总结)
1、大神结论
https://martinfowler.com/bliki/CircuitBreaker.html2、熔断状态
- 正常调用http://localhost:8001/payment/circuit/1
熔断打开
- 请求不再进行调用当前服务,内部设置时钟一般为MTTR(平均故障处理时间),当打开时长达到所设时钟则进入半熔断状态
- 熔断关闭
- 熔断关闭不会对服务进行熔断
熔断半开
- 部分请求根据规则调用当前服务,如果请求成功且符合规则则认为当前服务恢复正常,关闭熔断
3、官网断路器流程图
4、官网步骤
5、断路器在什么情况下开始起作用
涉及到断路器的三个重要参数:快照时间窗、请求总数阀值、错误百分比阀值。//=========服务熔断 @HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = { //熔断开关 @HystrixProperty(name = "circuitBreaker.enabled",value = "true"), // 该属性用来设置在滚动时间窗中,断路器熔断的最小请求数。例如,默认该值为 20 的时候, // 如果滚动时间窗(默认10秒)内仅收到了19个请求,即使这19个请求都失败了,断路器也不会打开。 @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"), // 该属性用来设置当断路器打开之后的休眠时间窗。休眠时间窗结束之后, // 会将断路器置为 "半开" 状态,尝试熔断的请求命令,如果依然失败就将断路器继续设置为 "打开" 状态, // 如果成功就设置为 "关闭" 状态。 @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"), // 该属性用来设置在滚动时间窗中,表示在滚动时间窗中,在请求数量超过 // circuitBreaker.requestVolumeThreshold 的情况下,如果错误请求数的百分比超过50, // 就把断路器设置为 "打开" 状态,否则就设置为 "关闭" 状态。 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"), })
- 部分请求根据规则调用当前服务,如果请求成功且符合规则则认为当前服务恢复正常,关闭熔断
1:快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒。
- 2:请求总数阀值:在快照时间窗内,必须满足请求总数阀值才有资格熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用次数不足20次,即使所有的请求都超时或其他原因失败,断路器都不会打开。
3:错误百分比阀值:当请求总数在快照时间窗内超过了阀值,比如发生了30次调用,如果在这30次调用中,有15次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%阀值情况下,这时候就会将断路器打开。
6、断路器开启或者关闭的条件
到达以上阀值,断路器将会开启
- 当满足一定的阀值的时候(默认10秒内超过20个请求次数)
- 当失败率达到一定的时候(默认10秒内超过50%的请求失败)
- 当开启的时候,所有请求都不会进行转发
一段时间之后(默认是5秒),这个时候断路器是半开状态,会让其中一个请求进行转发。
1:再有请求调用的时候,将不会调用主逻辑,而是直接调用降级fallback。通过断路器,实现了自动地发现错误并将降级逻辑切换为主逻辑,减少响应延迟的效果。
- 2:原来的主逻辑要如何恢复呢?
//========================All
@HystrixCommand(fallbackMethod = "str_fallbackMethod",
groupKey = "strGroupCommand",
commandKey = "strCommand",
threadPoolKey = "strThreadPool",
commandProperties = {
// 设置隔离策略,THREAD 表示线程池 SEMAPHORE:信号池隔离
@HystrixProperty(name = "execution.isolation.strategy", value = "THREAD"),
// 当隔离策略选择信号池隔离的时候,用来设置信号池的大小(最大并发数)
@HystrixProperty(name = "execution.isolation.semaphore.maxConcurrentRequests", value = "10"),
// 配置命令执行的超时时间
@HystrixProperty(name = "execution.isolation.thread.timeoutinMilliseconds", value = "10"),
// 是否启用超时时间
@HystrixProperty(name = "execution.timeout.enabled", value = "true"),
// 执行超时的时候是否中断
@HystrixProperty(name = "execution.isolation.thread.interruptOnTimeout", value = "true"),
// 执行被取消的时候是否中断
@HystrixProperty(name = "execution.isolation.thread.interruptOnCancel", value = "true"),
// 允许回调方法执行的最大并发数
@HystrixProperty(name = "fallback.isolation.semaphore.maxConcurrentRequests", value = "10"),
// 服务降级是否启用,是否执行回调函数
@HystrixProperty(name = "fallback.enabled", value = "true"),
// 是否启用断路器
@HystrixProperty(name = "circuitBreaker.enabled", value = "true"),
// 该属性用来设置在滚动时间窗中,断路器熔断的最小请求数。例如,默认该值为 20 的时候,
// 如果滚动时间窗(默认10秒)内仅收到了19个请求,即使这19个请求都失败了,断路器也不会打开。
@HystrixProperty(name = "circuitBreaker.requestVolumeThreshold", value = "20"),
// 该属性用来设置在滚动时间窗中,表示在滚动时间窗中,在请求数量超过
// circuitBreaker.requestVolumeThreshold 的情况下,如果错误请求数的百分比超过50,
// 就把断路器设置为 "打开" 状态,否则就设置为 "关闭" 状态。
@HystrixProperty(name = "circuitBreaker.errorThresholdPercentage", value = "50"),
// 该属性用来设置当断路器打开之后的休眠时间窗。休眠时间窗结束之后,
// 会将断路器置为 "半开" 状态,尝试熔断的请求命令,如果依然失败就将断路器继续设置为 "打开" 状态,
// 如果成功就设置为 "关闭" 状态。
@HystrixProperty(name = "circuitBreaker.sleepWindowinMilliseconds", value = "5000"),
// 断路器强制打开
@HystrixProperty(name = "circuitBreaker.forceOpen", value = "false"),
// 断路器强制关闭
@HystrixProperty(name = "circuitBreaker.forceClosed", value = "false"),
// 滚动时间窗设置,该时间用于断路器判断健康度时需要收集信息的持续时间
@HystrixProperty(name = "metrics.rollingStats.timeinMilliseconds", value = "10000"),
// 该属性用来设置滚动时间窗统计指标信息时划分"桶"的数量,断路器在收集指标信息的时候会根据
// 设置的时间窗长度拆分成多个 "桶" 来累计各度量值,每个"桶"记录了一段时间内的采集指标。
// 比如 10 秒内拆分成 10 个"桶"收集这样,所以 timeinMilliseconds 必须能被 numBuckets 整除。否则会抛异常
@HystrixProperty(name = "metrics.rollingStats.numBuckets", value = "10"),
// 该属性用来设置对命令执行的延迟是否使用百分位数来跟踪和计算。如果设置为 false, 那么所有的概要统计都将返回 -1。
@HystrixProperty(name = "metrics.rollingPercentile.enabled", value = "false"),
// 该属性用来设置百分位统计的滚动窗口的持续时间,单位为毫秒。
@HystrixProperty(name = "metrics.rollingPercentile.timeInMilliseconds", value = "60000"),
// 该属性用来设置百分位统计滚动窗口中使用 “ 桶 ”的数量。
@HystrixProperty(name = "metrics.rollingPercentile.numBuckets", value = "60000"),
// 该属性用来设置在执行过程中每个 “桶” 中保留的最大执行次数。如果在滚动时间窗内发生超过该设定值的执行次数,
// 就从最初的位置开始重写。例如,将该值设置为100, 滚动窗口为10秒,若在10秒内一个 “桶 ”中发生了500次执行,
// 那么该 “桶” 中只保留最后的100次执行的统计。另外,增加该值的大小将会增加内存量的消耗,并增加排序百分位数所需的计算时间。
@HystrixProperty(name = "metrics.rollingPercentile.bucketSize", value = "100"),
// 该属性用来设置采集影响断路器状态的健康快照(请求的成功、错误百分比)的间隔等待时间。
@HystrixProperty(name = "metrics.healthSnapshot.intervalinMilliseconds", value = "500"),
// 是否开启请求缓存
@HystrixProperty(name = "requestCache.enabled", value = "true"),
// HystrixCommand的执行和事件是否打印日志到 HystrixRequestLog 中
@HystrixProperty(name = "requestLog.enabled", value = "true"),
},
threadPoolProperties = {
// 该参数用来设置执行命令线程池的核心线程数,该值也就是命令执行的最大并发量
@HystrixProperty(name = "coreSize", value = "10"),
// 该参数用来设置线程池的最大队列大小。当设置为 -1 时,线程池将使用 SynchronousQueue 实现的队列,
// 否则将使用 LinkedBlockingQueue 实现的队列。
@HystrixProperty(name = "maxQueueSize", value = "-1"),
// 该参数用来为队列设置拒绝阈值。通过该参数,即使队列没有达到最大值也能拒绝请求。
// 该参数主要是对 LinkedBlockingQueue 队列的补充,因为 LinkedBlockingQueue
// 队列不能动态修改它的对象大小,而通过该属性就可以调整拒绝请求的队列大小了。
@HystrixProperty(name = "queueSizeRejectionThreshold", value = "5"),
}
)
public String strConsumer() {
return "hello 2020";
}
public String str_fallbackMethod() {
return "*****fall back str_fallbackMethod";
}
8、服务限流
- 下面高级篇讲解alibaba的Sentinel说明
4、hystrix工作流程
1、官网
https://github.com/Netflix/Hystrix/wiki/How-it-Works2、Hystrix工作流程
1、官网图例
2、步骤说明
| 1 | 创建 HystrixCommand(用在依赖的服务返回单个操作结果的时候)或 HystrixObserableCommand(用在依赖的服务返回多个操作结果的时候)对象。 | | —- | —- | | 2 | 命令执行。其中 HystrixComand 实现了下面前两种执行方式;而 HystrixObservableCommand 实现了后两种执行方式:execute():同步执行,从依赖的服务返回一个单一的结果对象,或是在发生错误的时候抛出异常。queue():异步执行,直接返回一个Future对象,其中包含了服务执行结束时要返回的单一结果对象。observe():返回 Observable 对象,它代表了操作的多个结果,它是一个 Hot Obserable(不论 “事件源” 是否有 “订阅者”,都会在创建后对事件进行发布,所以对于 Hot Observable 的每一个 “订阅者” 都有可能是从 “事件源” 的中途开始的,并可能只是看到了整个操作的局部过程)。toObservable():同样会返回 Observable 对象,也代表了操作的多个结果,但它返回的是一个Cold Observable(没有 “订阅者” 的时候并不会发布事件,而是进行等待,直到有 “订阅者” 之后才发布事件,所以对于 Cold Observable 的订阅者,它可以保证从一开始看到整个操作的全部过程)。 | | 3 | 若当前命令的请求缓存功能是被启用的,并且该命令缓存命中,那么缓存的结果会立即以 Observable 对象的形式返回。 | | 4 | 检查断路器是否为打开状态。如果断路器是打开的,那么Hystrix不会执行命令,而是转接到 fallback 处理逻辑(第 8 步);如果断路器是关闭的,检查是否有可用资源来执行命令(第 5 步)。 | | 5 | 线程池/请求队列/信号量是否占满。如果命令依赖服务的专有线程池和请求队列,或者信号量(不使用线程池的时候)已经被占满,那么 Hystrix 也不会执行命令,而是转接到 fallback 处理逻辑(第8步)。 | | 6 | Hystrix 会根据我们编写的方法来决定采取什么样的方式去请求依赖服务。HystrixCommand.run() :返回一个单一的结果,或者抛出异常。HystrixObservableCommand.construct():返回一个Observable 对象来发射多个结果,或通过 onError 发送错误通知。 | | 7 | Hystrix会将 “成功”、”失败”、”拒绝”、”超时” 等信息报告给断路器,而断路器会维护一组计数器来统计这些数据。断路器会使用这些统计数据来决定是否要将断路器打开,来对某个依赖服务的请求进行 “熔断/短路”。 | | 8 | 当命令执行失败的时候, Hystrix 会进入 fallback 尝试回退处理,我们通常也称该操作为 “服务降级”。而能够引起服务降级处理的情况有下面几种:第4步:当前命令处于”熔断/短路”状态,断路器是打开的时候。第5步:当前命令的线程池、请求队列或者信号量被占满的时候。第6步:HystrixObservableCommand.construct() 或 HystrixCommand.run() 抛出异常的时候。 | | 9 | 当Hystrix命令执行成功之后,它会将处理结果直接返回或是以Observable 的形式返回。 |
tips:如果我们没有为命令实现降级逻辑或者在降级处理逻辑中抛出了异常, Hystrix 依然会返回一个 Observable 对象,但是它不会发射任何结果数据,而是通过 onError 方法通知命令立即中断请求,并通过onError()方法将引起命令失败的异常发送给调用者。
5、服务监控hystrixDashboard
1、概述
除了隔离依赖服务的调用以外,Hystrix还提供了准实时的调用监控(Hystrix Dashboard),Hystrix会持续地记录所有通过Hystrix发起的请求的执行信息,并以统计报表和图形的形式展示给用户,包括每秒执行多少请求多少成功,多少失败等。Netflix通过hystrix-metrics-event-stream项目实现了对以上指标的监控。Spring Cloud也提供了Hystrix Dashboard的整合,对监控内容转化成可视化界面。
2、仪表盘9001
1、新建cloud-consumer-hystrix-dashboard9001
修改pom.xml ```xml <?xml version=”1.0” encoding=”UTF-8”?> <project xmlns=”http://maven.apache.org/POM/4.0.0“
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<artifactId>cloud2020</artifactId> <groupId>com.daijunyi</groupId> <version>1.0-SNAPSHOT</version>
4.0.0 cloud-consumer-hystrix-dashboard9001 org.springframework.cloud spring-cloud-starter-netflix-hystrix-dashboard org.springframework.boot spring-boot-starter-actuator org.springframework.boot spring-boot-devtools runtime true org.projectlombok lombok true org.springframework.boot spring-boot-starter-test test
- 修改yaml
```yaml
server:
port: 9001
- 主启动类 ```java package com.daijunyi;
import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cloud.netflix.hystrix.dashboard.EnableHystrixDashboard;
@SpringBootApplication @EnableHystrixDashboard public class HystrixDashboard9001 { public static void main(String[] args) { SpringApplication.run(HystrixDashboard9001.class,args); } }
<a name="w2l3a"></a>
#### 2、所有将被监控的项目必须添加actuator
```xml
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
3、启动访问
3、断路器演示(服务监控hystrixDashboard)
1、修改cloud-provider-hystrix-payment8001
- 注意:新版本Hystrix需要在主启动类MainAppHystrix8001中指定监控路径 ```java package com.daijunyi;
import com.netflix.hystrix.contrib.metrics.eventstream.HystrixMetricsStreamServlet; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.boot.web.servlet.ServletRegistrationBean; import org.springframework.cloud.client.circuitbreaker.EnableCircuitBreaker; import org.springframework.cloud.netflix.eureka.EnableEurekaClient; import org.springframework.context.annotation.Bean;
@SpringBootApplication @EnableEurekaClient @EnableCircuitBreaker // 启用断路器 public class HystrixPayment8001 { public static void main(String[] args) { SpringApplication.run(HystrixPayment8001.class,args); }
/**
*此配置是为了服务监控而配置,与服务容错本身无关,springcloud升级后的坑
*ServletRegistrationBean因为springboot的默认路径不是"/hystrix.stream",
*只要在自己的项目里配置上下面的servlet就可以了
*/
@Bean
public ServletRegistrationBean getServlet() {
HystrixMetricsStreamServlet streamServlet = new HystrixMetricsStreamServlet();
ServletRegistrationBean registrationBean = new ServletRegistrationBean(streamServlet);
registrationBean.setLoadOnStartup(1);
registrationBean.addUrlMappings("/hystrix.stream" );
registrationBean.setName("HystrixMetricsStreamServlet" );
return registrationBean;
}
}
2、监控测试
- 启动1个eureka或者3个eureka集群均可
- 观察监控窗口
- 添加我们刚刚指定的8001中的监控地址http://localhost:8001/hystrix.stream
测试
- http://localhost:8001/payment/circuit/31
- http://localhost:8001/payment/circuit/-31
- 上述地址访问之后就会看到数据有变化了
- 看到了断路器熔断了 circuit Open
- 过后之后再正常访问了之后
- 断路器又关闭了
3、如何看
1、1圈
实心圆:共有两种含义。它通过颜色的变化代表了实例的健康程度,它的健康度从绿色<黄色<橙色<红色递减。
该实心圆除了颜色的变化之外,它的大小也会根据实例的请求流量发生变化,流量越大该实心圆就越大。所以通过该实心圆的展示,就可以在大量的实例中快速的发现故障实例和高压力实例。
2、1线
曲线:用来记录2分钟内流量的相对变化,可以通过它来观察到流量的上升和下降趋势。
3、整图说明
4、整图说明2
5、搞懂一个才能看懂复杂的