HBase默认配置

官网配置文档:http://hbase.apache.org/book.html#_configuration_files
中文翻译转自:http://eclecl1314-163-com.iteye.com/blog/1474286


■ 常见重要配置参数

(1) hbase.rpc.timeout
rpc的超时时间,默认 60s,不建议修改,避免影响正常的业务,在线上环境刚开始配置的是 3 秒,运行半天后发现了大量的 timeout error,原因是有一个 region 出现了如下问题阻塞了写操作:“Blocking updates … memstore size 434.3m is >= than blocking 256.0m size”可见不能太低
(2) ipc.socket.timeout:socket 建立链接的超时时间,应该小于或者等于 rpc 的超时时间,默认为 20s
(3) hbase.client.retries.number:重试次数,默认为 10,可配置为 3
(4) hbase.client.pause:重试的休眠时间,默认为 1s,可减少,比如 100ms
(5) hbase.regionserver.lease.period:scan 查询时每次与 server 交互的超时时间,默认为 60s,可不调整

■ HBase默认配置参数

1. hbase.rootdir

  • 这个目录是 RegionServer 的共享目录,用来持久化 HBase。URL 需要是 “完全正确” 的,还要包含文件系统的 scheme。 例如 “/hbase” 表示 HBase 在 HDFS 中占用的实际存储位置,HDFS 的 NameNode 运行在主机名为 master5 的 8020 端口,则 hbase.rootdir 的设置应为 “hdfs://master5:8020/hbase”。在默认情况下 HBase 是写在 /tmp 中的。不修改这个配置的话,数据会在重启的时候丢失。特别注意的是 hbase.rootdir 里面的 HDFS 地址是要跟 Hadoop 的 core-site.xml 里面的 fs.defaultFS 的 HDFS 的 IP 地址或者域名、端口必须一致。
  • 默认为 file:///tmp/hbase-${user.name}/hbase

2. hbase.cluster.distributed

  • HBase 的运行模式。为 false 表示单机模式,为 true 表示分布式模式。若为 false,HBase 和 ZooKeeper 会运行在同一个 JVM 中
  • 默认值为 false

3. hbase.master (hbase.master.port)

  • 如果只设置单个 Hmaster,那么 hbase.master 属性参数需要设置为 master5:60000 (主机名:60000)
  • 如果要设置多个 Hmaster,那么我们只需要提供端口 60000,因为选择真正的 master 的事情会有 zookeeper 去处理
  • 默认端口号:60000

4. hbase.tmp.dir

  • 本地文件系统的临时文件夹。可以修改到一个更为持久的目录上。(/tmp会在重启时清除)
  • 默认: /tmp/hbase-${user.name}

5. hbase.master.info.port

  • HBase Master web 界面端口. 设置为 -1 意味着你不想让它运行
  • 默认: 60010

6. hbase.master.info.bindAddress

  • HBase Master web 界面绑定的端口
  • 默认: 0.0.0.0

7. hbase.client.write.buffer

  • HTable 客户端的写缓冲的默认大小。这个值越大,需要消耗的内存越大。因为缓冲在客户端和服务端都有实例,所以需要消耗客户端和服务端两个地方的内存。得到的好处是,可以减少 RPC 的次数。可以这样估算服务器端被占用的内存: hbase.client.write.buffer * hbase.regionserver.handler.count
  • 默认: 2097152 (2G)

8. hbase.regionserver.port

  • HBase RegionServer 绑定的端口
  • 默认: 60020

9. hbase.regionserver.info.port

  • HBase RegionServer web 界面绑定的端口 设置为 -1 意味这你不想与运行 RegionServer 界面
  • 默认: 60030

10. hbase.regionserver.info.port.auto

  • Master 或 RegionServer 是否要动态搜一个可以用的端口来绑定界面。当 hbase.regionserver.info.port已经被占用的时候,可以搜一个空闲的端口绑定。这个功能在测试的时候很有用。默认关闭
  • 默认: false

11. hbase.regionserver.info.bindAddress

  • HBase RegionServer web 界面的IP地址
  • 默认: 0.0.0.0

12. hbase.regionserver.class

  • RegionServer 使用的接口。客户端打开代理来连接region server的时候会使用到
  • 默认: org.apache.hadoop.hbase.ipc.HRegionInterface

13. hbase.client.pause

  • 通常的客户端暂停时间。最多的用法是客户端在重试前的等待时间。比如失败的 get 操作和 region 查询操作等都很可能用到
  • 默认: 1000 ms

14. hbase.client.retries.number

  • 最大重试次数。例如 region 查询,Get 操作,Update 操作等等都可能发生错误,需要重试。这是最大重试错误的值
  • 默认: 10

15. hbase.client.scanner.caching

  • 当调用 Scanner 的 next 方法,而值又不在缓存里的时候,从服务端一次获取的行数。越大的值意味着 Scanner 会快一些,但是会占用更多的内存。当缓冲被占满的时候,next 方法调用会越来越慢。慢到一定程度,可能会导致超时。例如超过了 hbase.regionserver.lease.period
  • 默认: 1

16.hbase.client.keyvalue.maxsize

  • 一个 KeyValue 实例的最大 size。这个是用来设置存储文件中的单个 entry 的大小上界。因为一个 KeyValue 是不能分割的,所以可以避免因为数据过大导致 region 不可分割。明智的做法是把它设为可以被最大 region size 整除的数。如果设置为 0 或者更小,就会禁用这个检查。默认 10MB
  • 默认: 10485760 (10MB)

17. hbase.regionserver.lease.period

  • 客户端租用 HRegion server 期限,即超时阀值。单位是毫秒。默认情况下,客户端必须在这个时间内发一条信息,否则视为死掉。
  • 默认: 60000

18. hbase.regionserver.handler.count

  • RegionServers 受理的 RPC Server 实例数量。对于 Master 来说,这个属性是 Master 受理的 handler 数量
  • 默认: 10

19. hbase.regionserver.msginterval

  • RegionServer 发消息给 Master 时间间隔,单位是毫秒
  • 默认: 3000

20. hbase.regionserver.optionallogflushinterval

  • 将 Hlog 同步到 HDFS 的间隔。如果 Hlog 没有积累到一定的数量,到了时间,也会触发同步。默认是 1秒,单位毫秒。
  • 默认: 1000

21. hbase.regionserver.regionSplitLimit

  • region 的数量到了这个值后就不会在分裂了。这不是一个 region 数量的硬性限制。但是起到了一定指导性的作用,到了这个值就该停止分裂了。默认是 MAX_INT。就是说不阻止分裂。
  • 默认: 2147483647 (1G)

22. hbase.regionserver.logroll.period

  • 提交 commit log 的间隔,不管有没有写足够的值
  • 默认: 3600000

23. hbase.regionserver.hlog.reader.impl

  • HLog file reader 的实现
  • 默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogReader

24. hbase.regionserver.hlog.writer.impl

  • HLog file writer 的实现
  • 默认: org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogWriter

25. hbase.regionserver.thread.splitcompactcheckfrequency

  • region server 多久执行一次 split/compaction 检查
  • 默认: 20000

26. hbase.regionserver.nbreservationblocks

  • 储备的内存 block 的数量(译者注:就像石油储备一样)。当发生 out of memory 异常的时候,我们可以用这些内存在 RegionServer 停止之前做清理操作
  • 默认: 4

27. hbase.zookeeper.dns.interface

  • 当使用 DNS 的时候,Zookeeper 用来上报的 IP 地址的网络接口名字
  • 默认: default

28. hbase.zookeeper.dns.nameserver

  • 当使用 DNS 的时候,Zookeepr 使用的 DNS 的域名或者 IP 地址,Zookeeper 用它来确定和 master 用来进行通讯的域名
  • 默认: default

29. hbase.regionserver.dns.interface

  • 当使用 DNS 的时候,RegionServer 用来上报的 IP 地址的网络接口名字
  • 默认: default

30. hbase.regionserver.dns.nameserver

  • 当使用 DNS 的时候,RegionServer 使用的 DNS 的域名或者 IP 地址,RegionServer 用它来确定和 master 用来进行通讯的域名
  • 默认: default

31. hbase.master.dns.interface

  • 当使用 DNS 的时候,Master 用来上报的 IP 地址的网络接口名字
  • 默认: default

32. hbase.master.dns.nameserver

  • 当使用DNS的时候,RegionServer使用的DNS的域名或者IP地址,Master用它来确定用来进行通讯的域名
  • 默认: default

33. hbase.balancer.period

  • Master 执行 region balancer 的间隔
  • 默认: 300000

34. hbase.regions.slop

  • 当任一 regionserver 有 average + (average * slop) 个 region 是会执行 Rebalance
  • 默认: 0

35. hbase.master.logcleaner.ttl

  • Hlog 存在于.oldlogdir 文件夹的最长时间, 超过了就会被 Master 的线程清理掉
  • 默认: 600000

36. hbase.master.logcleaner.plugins

  • LogsCleaner 服务会执行的一组 LogCleanerDelegat。值用逗号间隔的文本表示。这些 WAL/HLog cleaners 会按顺序调用。可以把先调用的放在前面。你可以实现自己的 LogCleanerDelegat,加到 Classpath下,然后在这里写 下类的全称。一般都是加在默认值的前面
  • 默认: org.apache.hadoop.hbase.master.TimeToLiveLogCleaner

37. hbase.regionserver.global.memstore.upperLimit

  • 单个 region server 的全部 memtores 的最大值。超过这个值,一个新的 update 操作会被挂起,强制执行flush操作
  • 默认: 0.4

38. hbase.regionserver.global.memstore.lowerLimit

  • 当强制执行 flush 操作的时候,当低于这个值的时候,flush 会停止。默认是堆大小的 35% . 如果这个值和 hbase.regionserver.global.memstore.upperLimit 相同就意味着当 update 操作因为内存限制被挂起时,会尽量少的执行 flush(译者注:一旦执行 flush,值就会比下限要低,不再执行)
  • 默认: 0.35

39. hbase.server.thread.wakefrequency

  • service 工作的 sleep 间隔,单位毫秒。 可以作为 service 线程的 sleep 间隔,比如 log roller
  • 默认: 10000

40. hbase.hregion.memstore.flush.size

  • 当 memstore 的大小超过这个值的时候,会 flush 到磁盘。这个值被一个线程每隔 hbase.server.thread.wakefrequency 检查一下
  • 默认: 67108864 (64MB)

41. hbase.hregion.preclose.flush.size

  • 当一个 region 中的 memstore 的大小大于这个值的时候,我们又触发了 close. 会先运行“pre-flush”操作,清理这个需要关闭的 memstore,然后将这个 region 下线。当一个 region 下线了,我们无法再进行任何写操作。如果一个 memstore 很大的时候,flush 操作会消耗很多时间。”pre-flush” 操作意味着在 region 下线之前,会先把 memstore 清空。这样在最终执行 close 操作的时候,flush 操作会很快
  • 默认: 5242880 (5MB)

42. hbase.hregion.memstore.block.multiplier

  • 如果 memstore 有 hbase.hregion.memstore.block.multiplier 倍数的 hbase.hregion.flush.size 的大小,就会阻塞 update 操作。这是为了预防在 update 高峰期会导致的失控。如果不设上 界,flush 的时候会花很长的时间来合并或者分割,最坏的情况就是引发 out of memory 异常。(译者注:内存操作的速度和磁盘不匹配,需要等一等。原文似乎有误)
  • 默认: 2

43. hbase.hregion.memstore.mslab.enabled

  • 体验特性:启用 memStore 分配本地缓冲区。这个特性是为了防止在大量写负载的时候堆的碎片过多。这可以减少 GC 操作的频率。( GC 有可能会 Stop the world )(译者注:实现的原理相当于预分配内存,而不是每一个值都要从堆里分配)
  • 默认: false

44. hbase.hregion.max.filesize

  • 最大 HStoreFile 大小。若某个 Column families 的 HStoreFile 增长达到这个值,这个 Hegion 会被切割成两个
  • 默认: 268435456 (256M)

45. hbase.hstore.compactionThreshold

  • 当一个 HStore 含有多于这个值的 HStoreFiles (每一个 memstore flush 产生一个 HStoreFile )的时候,会执行一个合并操作,把这 HStoreFiles 写成一个。这个值越大,需要合并的时间就越长
  • 默认: 3

46. hbase.hstore.blockingStoreFiles

  • 当一个 HStore 含有多于这个值的 HStoreFiles (每一个 memstore flush 产生一个 HStoreFile )的时候,会执行一个合并操作,update 会阻塞直到合并完成,直到超过了 hbase.hstore.blockingWaitTime 的值
  • 默认: 7

47. hbase.hstore.blockingWaitTime

  • hbase.hstore.blockingStoreFiles 所限制的 StoreFile 数量会导致 update 阻塞,这个时间是来限制阻塞时间的。当超过了这个时间,HRegion 会停止阻塞update操作,不过合并还有没有完成。默认为 90s
  • 默认: 90000

48. hbase.hstore.compaction.max

  • 每个“小”合并的 HStoreFiles 最大数量
  • 默认: 10

49. hbase.hregion.majorcompaction

  • 一个 Region 中的所有 HStoreFile 的 major compactions 的时间间隔。默认是 1 天。 设置为 0 就是禁用这个功能
  • 默认: 86400000

50. hbase.mapreduce.hfileoutputformat.blocksize

  • MapReduce 中 HFileOutputFormat 可以写 storefiles/hfiles。这个值是 hfile 的 blocksize 的最小值。通常在 Hbase写Hfile 的时候,bloocksize 是由 table schema(HColumnDescriptor) 决定的,但是在 mapreduce 写的时候,我们无法获取 schema 中 blocksize。这个值 越小,你的索引就越大,你随机访问需要获取的数据就越小。如果你的 cell 都很小,而且你需要更快的随机访问,可以把这个值调低
  • 默认: 65536

51. hfile.block.cache.size

  • 分配给 HFile/StoreFile 的 block cache 占最大堆(-Xmx setting)的比例。默认是20%,设置为0就是不分配
  • 默认: 0.2

52. hbase.hash.type

  • 哈希函数使用的哈希算法。可以选择两个值:: murmur (MurmurHash) 和 jenkins (JenkinsHash). 这个哈希是给 bloom filters 用的
  • 默认: murmur

53. hbase.master.keytab.file

  • HMaster server 验证登录使用的 kerberos keytab 文件路径。(译者注:Hbase 使用 Kerberos实现安全)
  • 默认: none

54. hbase.master.kerberos.principal

  • 例如. “hbase/_HOST@EXAMPLE.COM”。 HMaster 运行需要使用 kerberos principal name. principal name 可以在: user/hostname@DOMAIN 中获取. 如果 “_HOST” 被用做 hostname portion,需要使用实际运行的 hostname 来替代它
  • 默认: none

55. hbase.regionserver.keytab.file

  • HRegionServer 验证登录使用的 kerberos keytab 文件路径
  • 默认: none

56. hbase.regionserver.kerberos.principal

  • 例如. “hbase/_HOST@EXAMPLE.COM”。HRegionServer 运行需要使用 kerberos principal name. principal name 可以在: user/hostname@DOMAIN 中获取。如果 “_HOST” 被用做 hostname portion,需要使用实际运行的 hostname 来替代它。在这个文件中必须要有一个entry来描述 hbase.regionserver.keytab.file
  • 默认: none

57. zookeeper.session.timeout

  • ZooKeeper 会话超时。Hbase 把这个值传递改 zk 集群,向它推荐一个会话的最大超时时间。单位是毫秒
  • 默认: 180000

58. zookeeper.znode.parent

  • ZooKeeper 中的 Hbase 的根 ZNode。所有的 Hbase 的 ZooKeeper 会用这个目录配置相对路径。默认情况下,所有的 Hbase 的 ZooKeeper 文件路径是用相对路径,所以它们会都去这个目录下面\
  • 默认: /hbase

59. zookeeper.znode.rootserver

  • ZNode 保存的根 region 的路径. 这个值是由 Master 来写,client 和 regionserver 来读的。如果设为一个相对地址,父目录就是 ${zookeeper.znode.parent}。默认情形下,意味着根 region的路径存储在/hbase/root-region- server
  • 默认: root-region-server

60. hbase.zookeeper.quorum

  • Zookeeper 集群的地址列表,用逗号分割。例如:”host1.mydomain.com,host2.mydomain.com,host3.mydomain.com”.默认是 localhost,是给伪分布式用的。要修改才能在完全分布式的情况下使用。如果在hbase-env.sh设置了HBASE_MANAGES_ZK, 这些ZooKeeper节点就会和Hbase一起启动
  • 默认: localhost

61. hbase.zookeeper.peerport

  • ZooKeeper节点使用的端口
  • 默认: 2888

62. hbase.zookeeper.leaderport

  • ZooKeeper用来选择Leader的端口
  • 默认: 3888

63. hbase.zookeeper.property.initLimit

  • ZooKeeper的zoo.conf中的配置。 初始化synchronization阶段的ticks数量限制
  • 默认: 10

64. hbase.zookeeper.property.syncLimit

  • ZooKeeper的zoo.conf中的配置。 发送一个请求到获得承认之间的ticks的数量限制
  • 默认: 5

65. hbase.zookeeper.property.dataDir

  • ZooKeeper的zoo.conf中的配置。 快照的存储位置
  • 默认: ${hbase.tmp.dir}/zookeeper

66. hbase.zookeeper.property.clientPort

  • ZooKeeper的zoo.conf中的配置。 客户端连接的端口
  • 默认: 2181

67. hbase.zookeeper.property.maxClientCnxns

  • ZooKeeper的zoo.conf中的配置。 ZooKeeper集群中的单个节点接受的单个Client(以IP区分)的请求的并发数。这个值可以调高一点,防止在单机和伪分布式模式中出问题。
  • 默认: 2000

68. hbase.rest.port

  • HBase REST server的端口
  • 默认: 8080

69. hbase.rest.readonly

  • 定义REST server的运行模式。可以设置成如下的值: false: 所有的HTTP请求都是被允许的 - GET/PUT/POST/DELETE. true:只有GET请求是被允许的
  • 默认: false

70. hbase.regionserver.restart.on.zk.expire

  • 当 regionserver 遇到 ZooKeeper session expired , regionserver 是否选择 restart
  • 默认: false

    HBase配置常量类

    org.apache.hadoop.hbase.HConstants
key 含义 默认值
hbase.zookeeper.recoverable.waittime zookeeper恢复的等待时间 10000
hbase.zookeeper.property.maxClientCnxns zookeeper并发连接限制 300
zookeeper.session.timeout zookeeper会话超时时间 180 * 1000
hbase.zookeeper.useMulti 是否使用ZK的multi-update操作(多个原子操作合并,保证结果的一致性) false
hbase.regionserver.port region server监听端口 60020
hbase.regionserver.info.port 默认的regionserverin信息端口 60030
hbase.server.thread.wakefrequency 线程唤醒频率 10 * 1000
hbase.server.versionfile.writeattempts 多久写入版本文件,失败前 3
hbase.hstore.compaction.kv.max 批量flush/compaction的最大KV数 10
hbase.client.ipc.pool.type Hbase客户端IPC Pool类型 PoolType.RoundRobin
hbase.client.ipc.pool.size Hbase客户端IPC Pool大小 1
hbase.client.operation.timeout Hbase客户端操作超时时间(覆盖RPC超时时间) Integer.MAX_VALUE
hbase.client.meta.operation.timeout Hbase客户端操作超时时间(覆盖RPC超时时间) Integer.MAX_VALUE
hbase.hregion.max.filesize 切分的region最大文件大小 10 1024 1024 * 1024
hbase.hstore.open.and.close.threads.max 打开/关闭存储或并行存储的线程数 1
hbase.hregion.edits.replay.skip.errors 跳过错误重编辑 false
hbase.client.scanner.max.result.size scan最大的字节数 Long.MAX_VALUE
hbase.client.pause 一次get失败或region搜寻之后客户端暂停时间(失败睡眠时间) 100
hbase.client.max.total.tasks 客户端维护的最大并发连接 100
hbase.client.max.perserver.tasks 客户端对于一个regionserver维护的最大并发连接 2
hbase.client.max.perregion.tasks 客户端对于一个region维护的最大并发连接 1
hbase.server.pause 失败操作后的重试等待时间 1000
hbase.client.retries.number 客户端重试次数 31
hbase.client.prefetch.limit 预取的region个数限制 10
hbase.client.scanner.caching 所有客户端的默认scan缓存行数rows 100
hbase.meta.scanner.caching 元数据表(hbase:meta)的scan缓存行数rows 100
hbase.client.scanner.timeout.period 客户端scan超时时间 60000 ms
hbase.rpc.timeout hbase rpc超时时间 60000
hbase.rpc.shortoperation.timeout rpc短操作超时时间 10000
hbase.client.write.buffer 客户端写入数据缓冲区 2097152≈2M
hbase.client.keyvalue.maxsize 客户端最长的keyvalue值 -1(不限制)
hbase.ipc.client.connection.maxidletime 客户端连接最大空闲时间 10000(10s)
hbase.ipc.client.connect.max.retries 客户端连接最大重试次数 0
hbase.ipc.client.tcpnodelay tcp无延迟 true
hbase.ipc.client.tcpkeepalive tcp保活 true
ipc.ping.interval 客户端ping频率 60000(1 min)
ipc.socket.timeout 发起连接超时时间 20000(20s)

HBase配置文件

hbase-default.xml

  1. <?xml version="1.0"?>
  2. <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
  3. <configuration>
  4. <!-- hbase的本地临时目录,每次机器重启数据会丢失,建议放到某个持久化文件目录下 -->
  5. <property>
  6. <name>hbase.tmp.dir</name>
  7. <value>${java.io.tmpdir}/hbase-${user.name}</value>
  8. <description>Temporary directory on the local filesystem.
  9. Change this setting to point to a location more permanent
  10. than '/tmp', the usual resolve for java.io.tmpdir, as the
  11. '/tmp' directory is cleared on machine restart.
  12. </description>
  13. </property>
  14. <!-- 每个regionServer的共享目录,用来持久化Hbase,默认情况下在/tmp/hbase下面 -->
  15. <property>
  16. <name>hbase.rootdir</name>
  17. <value>${hbase.tmp.dir}/hbase</value>
  18. <description>The directory shared by region servers and into
  19. which HBase persists. The URL should be 'fully-qualified'
  20. to include the filesystem scheme. For example, to specify the
  21. HDFS directory '/hbase' where the HDFS instance's namenode is
  22. running at namenode.example.org on port 9000, set this value to:
  23. hdfs://namenode.example.org:9000/hbase. By default, we write
  24. to whatever ${hbase.tmp.dir} is set too -- usually /tmp --
  25. so change this configuration or else all data will be lost on
  26. machine restart.
  27. </description>
  28. </property>
  29. <!-- hbase底层如果使用hdfs作为文件系统,这里是指默认在文件系统的临时存储目录用来存储临时数据 -->
  30. <property>
  31. <name>hbase.fs.tmp.dir</name>
  32. <value>/user/${user.name}/hbase-staging</value>
  33. <description>A staging directory in default file system (HDFS)
  34. for keeping temporary data.
  35. </description>
  36. </property>
  37. <!-- hdfs里面批量装载的目录 -->
  38. <property>
  39. <name>hbase.bulkload.staging.dir</name>
  40. <value>${hbase.fs.tmp.dir}</value>
  41. <description>A staging directory in default file system (HDFS)
  42. for bulk loading.
  43. </description>
  44. </property>
  45. <!-- hbase集群模式,false表示hbase的单机,true表示是分布式模式 -->
  46. <property>
  47. <name>hbase.cluster.distributed</name>
  48. <value>false</value>
  49. <description>The mode the cluster will be in. Possible values are
  50. false for standalone mode and true for distributed mode. If
  51. false, startup will run all HBase and ZooKeeper daemons together
  52. in the one JVM.
  53. </description>
  54. </property>
  55. <!-- hbase依赖的zk地址 -->
  56. <property>
  57. <name>hbase.zookeeper.quorum</name>
  58. <value>localhost</value>
  59. <description>Comma separated list of servers in the ZooKeeper ensemble
  60. (This config. should have been named hbase.zookeeper.ensemble).
  61. For example, "host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".
  62. By default this is set to localhost for local and pseudo-distributed
  63. modes
  64. of operation. For a fully-distributed setup, this should be set to a
  65. full
  66. list of ZooKeeper ensemble servers. If HBASE_MANAGES_ZK is set in
  67. hbase-env.sh
  68. this is the list of servers which hbase will start/stop ZooKeeper on as
  69. part of cluster start/stop. Client-side, we will take this list of
  70. ensemble members and put it together with the
  71. hbase.zookeeper.clientPort
  72. config. and pass it into zookeeper constructor as the connectString
  73. parameter.
  74. </description>
  75. </property>
  76. <!-- 如果是本地存储,位于本地文件系统的路径 -->
  77. <property>
  78. <name>hbase.local.dir</name>
  79. <value>${hbase.tmp.dir}/local/</value>
  80. <description>Directory on the local filesystem to be used
  81. as a local storage.
  82. </description>
  83. </property>
  84. <!-- hbase master节点的端口 -->
  85. <property>
  86. <name>hbase.master.port</name>
  87. <value>16000</value>
  88. <description>The port the HBase Master should bind to.</description>
  89. </property>
  90. <!-- hbase master的web ui页面的端口 -->
  91. <property>
  92. <name>hbase.master.info.port</name>
  93. <value>16010</value>
  94. <description>The port for the HBase Master web UI.
  95. Set to -1 if you do not want a UI instance run.
  96. </description>
  97. </property>
  98. <!-- hbase master的web ui页面绑定的地址 -->
  99. <property>
  100. <name>hbase.master.info.bindAddress</name>
  101. <value>0.0.0.0</value>
  102. <description>The bind address for the HBase Master web UI
  103. </description>
  104. </property>
  105. <!-- 不知道干什么用 -->
  106. <property>
  107. <name>hbase.master.logcleaner.plugins</name>
  108. <value>org.apache.hadoop.hbase.master.cleaner.TimeToLiveLogCleaner
  109. </value>
  110. <description>A comma-separated list of BaseLogCleanerDelegate invoked
  111. by
  112. the LogsCleaner service. These WAL cleaners are called in order,
  113. so put the cleaner that prunes the most files in front. To
  114. implement your own BaseLogCleanerDelegate, just put it in HBase's classpath
  115. and add the fully qualified class name here. Always add the above
  116. default log cleaners in the list.
  117. </description>
  118. </property>
  119. <!-- hbase清理oldlogdir目录下的hlog文件的最长时间 ,单位毫秒 -->
  120. <property>
  121. <name>hbase.master.logcleaner.ttl</name>
  122. <value>600000</value>
  123. <description>Maximum time a WAL can stay in the .oldlogdir directory,
  124. after which it will be cleaned by a Master thread.
  125. </description>
  126. </property>
  127. <property>
  128. <name>hbase.master.hfilecleaner.plugins</name>
  129. <value>org.apache.hadoop.hbase.master.cleaner.TimeToLiveHFileCleaner
  130. </value>
  131. <description>A comma-separated list of BaseHFileCleanerDelegate
  132. invoked by
  133. the HFileCleaner service. These HFiles cleaners are called in order,
  134. so put the cleaner that prunes the most files in front. To
  135. implement your own BaseHFileCleanerDelegate, just put it in HBase's classpath
  136. and add the fully qualified class name here. Always add the above
  137. default log cleaners in the list as they will be overwritten in
  138. hbase-site.xml.
  139. </description>
  140. </property>
  141. <!-- Catalog Janitor从master到META的超时时间,我们知道这个Janitor是定时的去META扫描表目录,来决定回收无用的regions -->
  142. <property>
  143. <name>hbase.master.catalog.timeout</name>
  144. <value>600000</value>
  145. <description>Timeout value for the Catalog Janitor from the master to META.
  146. </description>
  147. </property>
  148. <!-- master是否监听master web ui端口并重定向请求给web ui服务器,该配置是master和RegionServer共享 -->
  149. <property>
  150. <name>hbase.master.infoserver.redirect</name>
  151. <value>true</value>
  152. <description>Whether or not the Master listens to the Master web
  153. UI port (hbase.master.info.port) and redirects requests to the web
  154. UI server shared by the Master and RegionServer.
  155. </description>
  156. </property>
  157. <!-- hbase regionServer的默认端口 -->
  158. <property>
  159. <name>hbase.regionserver.port</name>
  160. <value>16020</value>
  161. <description>The port the HBase RegionServer binds to.</description>
  162. </property>
  163. <!-- hbase regionServer的web ui的默认端口 -->
  164. <property>
  165. <name>hbase.regionserver.info.port</name>
  166. <value>16030</value>
  167. <description>The port for the HBase RegionServer web UI
  168. Set to -1 if you do not want the RegionServer UI to run.
  169. </description>
  170. </property>
  171. <!-- hbase regionServer的web ui绑定地址 -->
  172. <property>
  173. <name>hbase.regionserver.info.bindAddress</name>
  174. <value>0.0.0.0</value>
  175. <description>The address for the HBase RegionServer web UI
  176. </description>
  177. </property>
  178. <!-- 如果regionServer默认的端口被暂用了,是否允许hbase搜索一个可用的端口来绑定 -->
  179. <property>
  180. <name>hbase.regionserver.info.port.auto</name>
  181. <value>false</value>
  182. <description>Whether or not the Master or RegionServer
  183. UI should search for a port to bind to. Enables automatic port
  184. search if hbase.regionserver.info.port is already in use.
  185. Useful for testing, turned off by default.
  186. </description>
  187. </property>
  188. <!-- regionServer端默认开启的RPC监控实例数,也即RegionServer能够处理的IO请求线程数 -->
  189. <property>
  190. <name>hbase.regionserver.handler.count</name>
  191. <value>30</value>
  192. <description>Count of RPC Listener instances spun up on RegionServers.
  193. Same property is used by the Master for count of master handlers.
  194. </description>
  195. </property>
  196. <!-- hbase提供的可以用来处理请求的队列数 0.1 * 总数,如果为0则表示所有请求公用一个队列, 如果为1则表示每个请求自己有一个独立的队列 -->
  197. <property>
  198. <name>hbase.ipc.server.callqueue.handler.factor</name>
  199. <value>0.1</value>
  200. <description>Factor to determine the number of call queues.
  201. A value of 0 means a single queue shared between all the handlers.
  202. A value of 1 means that each handler has its own queue.
  203. </description>
  204. </property>
  205. <!-- hbase提供的读写队列数比例,参数值为0-1之间,如果为0则所有队列同时处理读写请求 -->
  206. <!-- 现在假设我们有10个队列 1、该值设置为0,则这10个队列同时处理读写请求 2、该值设置为1,则1个队列处理写情况,9个队列处理读请求
  207. 3、该值设置为0.x,则x个队列处理处理读请求,10-x个队列处理写请求 4、根据实际情况,读多写少还是写少读多,可按需配置 -->
  208. <property>
  209. <name>hbase.ipc.server.callqueue.read.ratio</name>
  210. <value>0</value>
  211. <description>Split the call queues into read and write queues.
  212. The specified interval (which should be between 0.0 and 1.0)
  213. will be multiplied by the number of call queues.
  214. A value of 0 indicate to not split the call queues, meaning that both
  215. read and write
  216. requests will be pushed to the same set of queues.
  217. A value lower than 0.5 means that there will be less read queues than
  218. write queues.
  219. A value of 0.5 means there will be the same number of read and write
  220. queues.
  221. A value greater than 0.5 means that there will be more read queues
  222. than write queues.
  223. A value of 1.0 means that all the queues except one are used to
  224. dispatch read requests.
  225. Example: Given the total number of call queues being 10
  226. a read.ratio of 0 means that: the 10 queues will contain both
  227. read/write requests.
  228. a read.ratio of 0.3 means that: 3 queues will contain only read
  229. requests
  230. and 7 queues will contain only write requests.
  231. a read.ratio of 0.5 means that: 5 queues will contain only read
  232. requests
  233. and 5 queues will contain only write requests.
  234. a read.ratio of 0.8 means that: 8 queues will contain only read
  235. requests
  236. and 2 queues will contain only write requests.
  237. a read.ratio of 1 means that: 9 queues will contain only read requests
  238. and 1 queues will contain only write requests.
  239. </description>
  240. </property>
  241. <!-- hbase提供的用于支持get/scan请求的队列比例 -->
  242. <property>
  243. <name>hbase.ipc.server.callqueue.scan.ratio</name>
  244. <value>0</value>
  245. <description>Given the number of read call queues, calculated from the
  246. total number
  247. of call queues multiplied by the callqueue.read.ratio, the scan.ratio
  248. property
  249. will split the read call queues into small-read and long-read queues.
  250. A value lower than 0.5 means that there will be less long-read queues
  251. than short-read queues.
  252. A value of 0.5 means that there will be the same number of short-read
  253. and long-read queues.
  254. A value greater than 0.5 means that there will be more long-read
  255. queues than short-read queues
  256. A value of 0 or 1 indicate to use the same set of queues for gets and
  257. scans.
  258. Example: Given the total number of read call queues being 8
  259. a scan.ratio of 0 or 1 means that: 8 queues will contain both long and
  260. short read requests.
  261. a scan.ratio of 0.3 means that: 2 queues will contain only long-read
  262. requests
  263. and 6 queues will contain only short-read requests.
  264. a scan.ratio of 0.5 means that: 4 queues will contain only long-read
  265. requests
  266. and 4 queues will contain only short-read requests.
  267. a scan.ratio of 0.8 means that: 6 queues will contain only long-read
  268. requests
  269. and 2 queues will contain only short-read requests.
  270. </description>
  271. </property>
  272. <!-- regionServer发送消息给Master的时间间隔,单位是毫秒 -->
  273. <property>
  274. <name>hbase.regionserver.msginterval</name>
  275. <value>3000</value>
  276. <description>Interval between messages from the RegionServer to Master
  277. in milliseconds.
  278. </description>
  279. </property>
  280. <!-- regionServer日志滚动提交的周期,不管这个日志有没有写满 -->
  281. <property>
  282. <name>hbase.regionserver.logroll.period</name>
  283. <value>3600000</value>
  284. <description>Period at which we will roll the commit log regardless
  285. of how many edits it has.
  286. </description>
  287. </property>
  288. <!-- 在regionServer上的WAL日志,在停止服务前允许的关闭 WAL 的连续错误数量 比如如果我们日志在滚动提交的是,此时wal写入错误,那么就会立即停止regionServer的服务
  289. 默认值2表示运行有2个错误发生 -->
  290. <property>
  291. <name>hbase.regionserver.logroll.errors.tolerated</name>
  292. <value>2</value>
  293. <description>The number of consecutive WAL close errors we will allow
  294. before triggering a server abort. A setting of 0 will cause the
  295. region server to abort if closing the current WAL writer fails during
  296. log rolling. Even a small value (2 or 3) will allow a region server
  297. to ride over transient HDFS errors.
  298. </description>
  299. </property>
  300. <!-- regionServer的WAL文件读取的实现类 -->
  301. <property>
  302. <name>hbase.regionserver.hlog.reader.impl</name>
  303. <value>org.apache.hadoop.hbase.regionserver.wal.ProtobufLogReader
  304. </value>
  305. <description>The WAL file reader implementation.</description>
  306. </property>
  307. <!-- regionServer的WAL文件写的实现类 -->
  308. <property>
  309. <name>hbase.regionserver.hlog.writer.impl</name>
  310. <value>org.apache.hadoop.hbase.regionserver.wal.ProtobufLogWriter
  311. </value>
  312. <description>The WAL file writer implementation.</description>
  313. </property>
  314. <!-- regionServer的全局memstore的大小,超过该大小会触发flush到磁盘的操作,默认是堆大小的40%,而且regionserver级别的
  315. flush会阻塞客户端读写 -->
  316. <property>
  317. <name>hbase.regionserver.global.memstore.size</name>
  318. <value></value>
  319. <description>Maximum size of all memstores in a region server before
  320. new
  321. updates are blocked and flushes are forced. Defaults to 40% of heap (0.4).
  322. Updates are blocked and flushes are forced until size of all
  323. memstores
  324. in a region server hits
  325. hbase.regionserver.global.memstore.size.lower.limit.
  326. The default value in this configuration has been intentionally left
  327. emtpy in order to
  328. honor the old hbase.regionserver.global.memstore.upperLimit property if
  329. present.
  330. </description>
  331. </property>
  332. <!--可以理解为一个安全的设置,有时候集群的“写负载”非常高,写入量一直超过flush的量,这时,我们就希望memstore不要超过一定的安全设置。
  333. 在这种情况下,写操作就要被阻塞一直到memstore恢复到一个“可管理”的大小, 这个大小就是默认值是堆大小 * 0.4 * 0.95,也就是当regionserver级别
  334. 的flush操作发送后,会阻塞客户端写,一直阻塞到整个regionserver级别的memstore的大小为 堆大小 * 0.4 *0.95为止 -->
  335. <property>
  336. <name>hbase.regionserver.global.memstore.size.lower.limit</name>
  337. <value></value>
  338. <description>Maximum size of all memstores in a region server before
  339. flushes are forced.
  340. Defaults to 95% of hbase.regionserver.global.memstore.size (0.95).
  341. A 100% value for this value causes the minimum possible flushing to
  342. occur when updates are
  343. blocked due to memstore limiting.
  344. The default value in this configuration has been intentionally left
  345. emtpy in order to
  346. honor the old hbase.regionserver.global.memstore.lowerLimit property if
  347. present.
  348. </description>
  349. </property>
  350. <!-- 内存中的文件在自动刷新之前能够存活的最长时间,默认是1h -->
  351. <property>
  352. <name>hbase.regionserver.optionalcacheflushinterval</name>
  353. <value>3600000</value>
  354. <description>
  355. Maximum amount of time an edit lives in memory before being automatically
  356. flushed.
  357. Default 1 hour. Set it to 0 to disable automatic flushing.
  358. </description>
  359. </property>
  360. <property>
  361. <name>hbase.regionserver.catalog.timeout</name>
  362. <value>600000</value>
  363. <description>Timeout value for the Catalog Janitor from the
  364. regionserver to META.</description>
  365. </property>
  366. <!-- 当使用dns的时候,regionServer用来上报IP地址的网络接口名字 -->
  367. <property>
  368. <name>hbase.regionserver.dns.interface</name>
  369. <value>default</value>
  370. <description>The name of the Network Interface from which a region
  371. server
  372. should report its IP address.
  373. </description>
  374. </property>
  375. <!-- 当使用DNS的时候,RegionServer使用的DNS的域名或者IP 地址,RegionServer用它来确定和master用来进行通讯的域名 -->
  376. <property>
  377. <name>hbase.regionserver.dns.nameserver</name>
  378. <value>default</value>
  379. <description>The host name or IP address of the name server (DNS)
  380. which a region server should use to determine the host name used by
  381. the
  382. master for communication and display purposes.
  383. </description>
  384. </property>
  385. <!-- region在切分的时候的默认切分策略 -->
  386. <property>
  387. <name>hbase.regionserver.region.split.policy</name>
  388. <value>org.apache.hadoop.hbase.regionserver.IncreasingToUpperBoundRegionSplitPolicy
  389. </value>
  390. <description>
  391. A split policy determines when a region should be split. The various
  392. other split policies that
  393. are available currently are ConstantSizeRegionSplitPolicy,
  394. DisabledRegionSplitPolicy,
  395. DelimitedKeyPrefixRegionSplitPolicy, KeyPrefixRegionSplitPolicy etc.
  396. </description>
  397. </property>
  398. <!-- 当某个HRegionServer上的region到达这个限制时,不会在进行region切分,也就是一个HRegionServer默认最大允许有1000个region -->
  399. <property>
  400. <name>hbase.regionserver.regionSplitLimit</name>
  401. <value>1000</value>
  402. <description>
  403. Limit for the number of regions after which no more region splitting
  404. should take place.
  405. This is not hard limit for the number of regions but acts as a guideline
  406. for the regionserver
  407. to stop splitting after a certain limit. Default is set to 1000.
  408. </description>
  409. </property>
  410. <!-- zk sesscion超时时间 -->
  411. <property>
  412. <name>zookeeper.session.timeout</name>
  413. <value>90000</value>
  414. <description>ZooKeeper session timeout in milliseconds. It is used in
  415. two different ways.
  416. First, this value is used in the ZK client that HBase uses to connect to
  417. the ensemble.
  418. It is also used by HBase when it starts a ZK server and it is passed as
  419. the 'maxSessionTimeout'. See
  420. http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions.
  421. For example, if a HBase region server connects to a ZK ensemble
  422. that's also managed by HBase, then the
  423. session timeout will be the one specified by this configuration. But, a
  424. region server that connects
  425. to an ensemble managed with a different configuration will be subjected
  426. that ensemble's maxSessionTimeout. So,
  427. even though HBase might propose using 90 seconds, the ensemble can have a
  428. max timeout lower than this and
  429. it will take precedence. The current default that ZK ships with is 40
  430. seconds, which is lower than HBase's.
  431. </description>
  432. </property>
  433. <!-- hbase在zk上默认的根目录 -->
  434. <property>
  435. <name>zookeeper.znode.parent</name>
  436. <value>/hbase</value>
  437. <description>Root ZNode for HBase in ZooKeeper. All of HBase's
  438. ZooKeeper
  439. files that are configured with a relative path will go under this node.
  440. By default, all of HBase's ZooKeeper file path are configured with a
  441. relative path, so they will all go under this directory unless
  442. changed.
  443. </description>
  444. </property>
  445. <!-- hbase在zk上的节点路径 -->
  446. <property>
  447. <name>zookeeper.znode.rootserver</name>
  448. <value>root-region-server</value>
  449. <description>Path to ZNode holding root region location. This is
  450. written by
  451. the master and read by clients and region servers. If a relative path is
  452. given, the parent folder will be ${zookeeper.znode.parent}. By
  453. default,
  454. this means the root location is stored at /hbase/root-region-server.
  455. </description>
  456. </property>
  457. <!-- hbase在zk上节点使用的权限 -->
  458. <property>
  459. <name>zookeeper.znode.acl.parent</name>
  460. <value>acl</value>
  461. <description>Root ZNode for access control lists.</description>
  462. </property>
  463. <property>
  464. <name>hbase.zookeeper.dns.interface</name>
  465. <value>default</value>
  466. <description>The name of the Network Interface from which a ZooKeeper
  467. server
  468. should report its IP address.
  469. </description>
  470. </property>
  471. <property>
  472. <name>hbase.zookeeper.dns.nameserver</name>
  473. <value>default</value>
  474. <description>The host name or IP address of the name server (DNS)
  475. which a ZooKeeper server should use to determine the host name used
  476. by the
  477. master for communication and display purposes.
  478. </description>
  479. </property>
  480. <!-- zk的使用端口 -->
  481. <property>
  482. <name>hbase.zookeeper.peerport</name>
  483. <value>2888</value>
  484. <description>Port used by ZooKeeper peers to talk to each other.
  485. See
  486. http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper
  487. for more information.
  488. </description>
  489. </property>
  490. <!-- zk直接执行leader选举时通讯的端口 -->
  491. <property>
  492. <name>hbase.zookeeper.leaderport</name>
  493. <value>3888</value>
  494. <description>Port used by ZooKeeper for leader election.
  495. See
  496. http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper
  497. for more information.
  498. </description>
  499. </property>
  500. <!-- zk是否支持多重更新 -->
  501. <property>
  502. <name>hbase.zookeeper.useMulti</name>
  503. <value>true</value>
  504. <description>Instructs HBase to make use of ZooKeeper's multi-update
  505. functionality.
  506. This allows certain ZooKeeper operations to complete more quickly and
  507. prevents some issues
  508. with rare Replication failure scenarios (see the release note of
  509. HBASE-2611 for an example).
  510. IMPORTANT: only set this to true if all ZooKeeper servers in the cluster are on
  511. version 3.4+
  512. and will not be downgraded. ZooKeeper versions before 3.4 do not support
  513. multi-update and
  514. will not fail gracefully if multi-update is invoked (see ZOOKEEPER-1495).
  515. </description>
  516. </property>
  517. <!-- 是否允许HBaseConfiguration去读取zk的配置文件,不清楚意义是什么? -->
  518. <property>
  519. <name>hbase.config.read.zookeeper.config</name>
  520. <value>false</value>
  521. <description>
  522. Set to true to allow HBaseConfiguration to read the
  523. zoo.cfg file for ZooKeeper properties. Switching this to true
  524. is not recommended, since the functionality of reading ZK
  525. properties from a zoo.cfg file has been deprecated.
  526. </description>
  527. </property>
  528. <property>
  529. <name>hbase.zookeeper.property.initLimit</name>
  530. <value>10</value>
  531. <description>Property from ZooKeeper's config zoo.cfg.
  532. The number of ticks that the initial synchronization phase can take.
  533. </description>
  534. </property>
  535. <property>
  536. <name>hbase.zookeeper.property.syncLimit</name>
  537. <value>5</value>
  538. <description>Property from ZooKeeper's config zoo.cfg.
  539. The number of ticks that can pass between sending a request and getting
  540. an
  541. acknowledgment.
  542. </description>
  543. </property>
  544. <property>
  545. <name>hbase.zookeeper.property.dataDir</name>
  546. <value>${hbase.tmp.dir}/zookeeper</value>
  547. <description>Property from ZooKeeper's config zoo.cfg.
  548. The directory where the snapshot is stored.
  549. </description>
  550. </property>
  551. <property>
  552. <name>hbase.zookeeper.property.clientPort</name>
  553. <value>2181</value>
  554. <description>Property from ZooKeeper's config zoo.cfg.
  555. The port at which the clients will connect.
  556. </description>
  557. </property>
  558. <property>
  559. <name>hbase.zookeeper.property.maxClientCnxns</name>
  560. <value>300</value>
  561. <description>Property from ZooKeeper's config zoo.cfg.
  562. Limit on number of concurrent connections (at the socket level) that a
  563. single client, identified by IP address, may make to a single member
  564. of
  565. the ZooKeeper ensemble. Set high to avoid zk connection issues running
  566. standalone and pseudo-distributed.
  567. </description>
  568. </property>
  569. <!--Client configurations -->
  570. <!-- hbase客户端每次 写缓冲的大小(也就是客户端批量提交到server端),这块大小会同时占用客户端和服务端,缓冲区更大可以减少RPC次数,但是更大意味着内存占用更多 -->
  571. <property>
  572. <name>hbase.client.write.buffer</name>
  573. <value>2097152</value>
  574. <description>Default size of the HTable client write buffer in bytes.
  575. A bigger buffer takes more memory -- on both the client and server
  576. side since server instantiates the passed write buffer to process
  577. it -- but a larger buffer size reduces the number of RPCs made.
  578. For an estimate of server-side memory-used, evaluate
  579. hbase.client.write.buffer * hbase.regionserver.handler.count
  580. </description>
  581. </property>
  582. <!-- 在hbase发生请求失败的情况下,每次重试的等待时间 ,如果某段时间网络持续不好,重试会一直发生,如果还是连不上,就会放弃连接,在重试的过程中,会阻塞其它线程来抢锁,如果长时间的超时会导致业务处理的阻塞 -->
  583. <property>
  584. <name>hbase.client.pause</name>
  585. <value>100</value>
  586. <description>General client pause value. Used mostly as value to wait
  587. before running a retry of a failed get, region lookup, etc.
  588. See hbase.client.retries.number for description of how we backoff from
  589. this initial pause amount and how this pause works w/ retries.
  590. </description>
  591. </property>
  592. <!--重试次数,如果连不上或者fail,会重试 -->
  593. <property>
  594. <name>hbase.client.retries.number</name>
  595. <value>35</value>
  596. <description>Maximum retries. Used as maximum for all retryable
  597. operations such as the getting of a cell's value, starting a row
  598. update,
  599. etc. Retry interval is a rough function based on hbase.client.pause. At
  600. first we retry at this interval but then with backoff, we pretty
  601. quickly reach
  602. retrying every ten seconds. See HConstants#RETRY_BACKOFF for how the backup
  603. ramps up. Change this setting and hbase.client.pause to suit your
  604. workload.
  605. </description>
  606. </property>
  607. <!-- 单个Htable实例发送给集群的最大任务数,也就是同一个实例最大的并发数 -->
  608. <property>
  609. <name>hbase.client.max.total.tasks</name>
  610. <value>100</value>
  611. <description>The maximum number of concurrent tasks a single HTable
  612. instance will
  613. send to the cluster.
  614. </description>
  615. </property>
  616. <!-- 单个Htable实例发给regionServer的最大的任务并发数 -->
  617. <property>
  618. <name>hbase.client.max.perserver.tasks</name>
  619. <value>5</value>
  620. <description>The maximum number of concurrent tasks a single HTable
  621. instance will
  622. send to a single region server.
  623. </description>
  624. </property>
  625. <!-- 客户端到一个region的最大连接数,也就是说如果一个客户端有超过配置项值到某个region的连接,后面的请求会被阻塞 -->
  626. <property>
  627. <name>hbase.client.max.perregion.tasks</name>
  628. <value>1</value>
  629. <description>The maximum number of concurrent connections the client
  630. will
  631. maintain to a single Region. That is, if there is already
  632. hbase.client.max.perregion.tasks writes in progress for this region,
  633. new puts
  634. won't be sent to this region until some writes finishes.
  635. </description>
  636. </property>
  637. <!-- 在执行hbase scan操作的时候,客户端缓存的行数,设置小意味着更多的rpc次数,设置大比较吃内存 -->
  638. <property>
  639. <name>hbase.client.scanner.caching</name>
  640. <value>2147483647</value>
  641. <description>Number of rows that we try to fetch when calling next
  642. on a scanner if it is not served from (local, client) memory. This
  643. configuration
  644. works together with hbase.client.scanner.max.result.size to try and use
  645. the
  646. network efficiently. The default value is Integer.MAX_VALUE by default so
  647. that
  648. the network will fill the chunk size defined by
  649. hbase.client.scanner.max.result.size
  650. rather than be limited by a particular number of rows since the size of
  651. rows varies
  652. table to table. If you know ahead of time that you will not require more
  653. than a certain
  654. number of rows from a scan, this configuration should be set to that row
  655. limit via
  656. Scan#setCaching. Higher caching values will enable faster scanners but will eat up
  657. more
  658. memory and some calls of next may take longer and longer times when the
  659. cache is empty.
  660. Do not set this value such that the time between invocations is greater
  661. than the scanner
  662. timeout; i.e. hbase.client.scanner.timeout.period
  663. </description>
  664. </property>
  665. <!--一个KeyValue实例的最大大小,这是存储文件中一个entry的容量上限,因为一个KeyValue是不能分割的, 所有可以避免因为数据过大导致region不可分割 -->
  666. <property>
  667. <name>hbase.client.keyvalue.maxsize</name>
  668. <value>10485760</value>
  669. <description>Specifies the combined maximum allowed size of a KeyValue
  670. instance. This is to set an upper boundary for a single entry saved
  671. in a
  672. storage file. Since they cannot be split it helps avoiding that a region
  673. cannot be split any further because the data is too large. It seems
  674. wise
  675. to set this to a fraction of the maximum region size. Setting it to
  676. zero
  677. or less disables the check.
  678. </description>
  679. </property>
  680. <!-- scan操作中单次rpc的超时时间(比较重要的参数) -->
  681. <property>
  682. <name>hbase.client.scanner.timeout.period</name>
  683. <value>60000</value>
  684. <description>Client scanner lease period in milliseconds.
  685. </description>
  686. </property>
  687. <property>
  688. <name>hbase.client.localityCheck.threadPoolSize</name>
  689. <value>2</value>
  690. </property>
  691. <!--Miscellaneous configuration -->
  692. <property>
  693. <name>hbase.bulkload.retries.number</name>
  694. <value>10</value>
  695. <description>Maximum retries. This is maximum number of iterations
  696. to atomic bulk loads are attempted in the face of splitting operations
  697. 0 means never give up.
  698. </description>
  699. </property>
  700. <property>
  701. <name>hbase.balancer.period</name>
  702. <value>300000</value>
  703. <description>Period at which the region balancer runs in the Master.
  704. </description>
  705. </property>
  706. <property>
  707. <name>hbase.normalizer.period</name>
  708. <value>1800000</value>
  709. <description>Period at which the region normalizer runs in the Master.
  710. </description>
  711. </property>
  712. <!-- HRegion负载迁移的时候的一个配置参数,具体怎么用可看HMaster里面的负载迁移的源代码 -->
  713. <property>
  714. <name>hbase.regions.slop</name>
  715. <value>0.2</value>
  716. <description>Rebalance if any regionserver has average + (average *
  717. slop) regions.</description>
  718. </property>
  719. <!-- 每次线程唤醒的周期 -->
  720. <property>
  721. <name>hbase.server.thread.wakefrequency</name>
  722. <value>10000</value>
  723. <description>Time to sleep in between searches for work (in
  724. milliseconds).
  725. Used as sleep interval by service threads such as log roller.
  726. </description>
  727. </property>
  728. <property>
  729. <name>hbase.server.versionfile.writeattempts</name>
  730. <value>3</value>
  731. <description>
  732. How many time to retry attempting to write a version file
  733. before just aborting. Each attempt is seperated by the
  734. hbase.server.thread.wakefrequency milliseconds.
  735. </description>
  736. </property>
  737. <!-- 单个region里memstore的缓存大小,超过那么整个HRegion就会flush,默认128M -->
  738. <property>
  739. <name>hbase.hregion.memstore.flush.size</name>
  740. <value>134217728</value>
  741. <description>
  742. Memstore will be flushed to disk if size of the memstore
  743. exceeds this number of bytes. Value is checked by a thread that runs
  744. every hbase.server.thread.wakefrequency.
  745. </description>
  746. </property>
  747. <property>
  748. <name>hbase.hregion.percolumnfamilyflush.size.lower.bound</name>
  749. <value>16777216</value>
  750. <description>
  751. If FlushLargeStoresPolicy is used, then every time that we hit the
  752. total memstore limit, we find out all the column families whose
  753. memstores
  754. exceed this value, and only flush them, while retaining the others whose
  755. memstores are lower than this limit. If none of the families have
  756. their
  757. memstore size more than this, all the memstores will be flushed
  758. (just as usual). This value should be less than half of the total memstore
  759. threshold (hbase.hregion.memstore.flush.size).
  760. </description>
  761. </property>
  762. <!--当一个 region 中的 memstore 的大小大于这个值的时候,我们又触发 了 close.会先运行“pre-flush”操作,清理这个需要关闭的
  763. memstore,然后 将这个 region 下线。当一个 region 下线了,我们无法再进行任何写操作。 如果一个 memstore 很大的时候,flush
  764. 操作会消耗很多时间。"pre-flush" 操作意味着在 region 下线之前,会先把 memstore 清空。这样在最终执行 close 操作的时候,flush
  765. 操作会很快。 -->
  766. <property>
  767. <name>hbase.hregion.preclose.flush.size</name>
  768. <value>5242880</value>
  769. <description>
  770. If the memstores in a region are this size or larger when we go
  771. to close, run a "pre-flush" to clear out memstores before we put up
  772. the region closed flag and take the region offline. On close,
  773. a flush is run under the close flag to empty memory. During
  774. this time the region is offline and we are not taking on any writes.
  775. If the memstore content is large, this flush could take a long time to
  776. complete. The preflush is meant to clean out the bulk of the memstore
  777. before putting up the close flag and taking the region offline so the
  778. flush that runs under the close flag has little to do.
  779. </description>
  780. </property>
  781. <!-- 当一个HRegion上的memstore的大小满足hbase.hregion.memstore.block.multiplier *
  782. hbase.hregion.memstore.flush.size, 这个HRegion会执行flush操作并阻塞对该HRegion的写入 -->
  783. <property>
  784. <name>hbase.hregion.memstore.block.multiplier</name>
  785. <value>4</value>
  786. <description>
  787. Block updates if memstore has hbase.hregion.memstore.block.multiplier
  788. times hbase.hregion.memstore.flush.size bytes. Useful preventing
  789. runaway memstore during spikes in update traffic. Without an
  790. upper-bound, memstore fills such that when it flushes the
  791. resultant flush files take a long time to compact or split, or
  792. worse, we OOME.
  793. </description>
  794. </property>
  795. <!-- 设置为true,有效减少在高并发写时候的内存碎片 -->
  796. <property>
  797. <name>hbase.hregion.memstore.mslab.enabled</name>
  798. <value>true</value>
  799. <description>
  800. Enables the MemStore-Local Allocation Buffer,
  801. a feature which works to prevent heap fragmentation under
  802. heavy write loads. This can reduce the frequency of stop-the-world
  803. GC pauses on large heaps.
  804. </description>
  805. </property>
  806. <!--HStoreFile最大的大小,当某个region的某个列族超过这个大小会进行region拆分 -->
  807. <property>
  808. <name>hbase.hregion.max.filesize</name>
  809. <value>10737418240</value>
  810. <description>
  811. Maximum HStoreFile size. If any one of a column families' HStoreFiles has
  812. grown to exceed this value, the hosting HRegion is split in two.
  813. </description>
  814. </property>
  815. <!-- 一个region进行 major compaction合并的周期,在这个点的时候, 这个region下的所有hfile会进行合并,默认是7天,major
  816. compaction非常耗资源,建议生产关闭(设置为0),在应用空闲时间手动触发 -->
  817. <property>
  818. <name>hbase.hregion.majorcompaction</name>
  819. <value>604800000</value>
  820. <description>The time (in miliseconds) between 'major' compactions of
  821. all
  822. HStoreFiles in a region. Default: Set to 7 days. Major compactions tend to
  823. happen exactly when you need them least so enable them such that they
  824. run at
  825. off-peak for your deploy; or, since this setting is on a periodicity that is
  826. unlikely to match your loading, run the compactions via an external
  827. invocation out of a cron job or some such.
  828. </description>
  829. </property>
  830. <!-- 一个抖动比例,意思是说上一个参数设置是7天进行一次合并,也可以有50%的抖动比例 -->
  831. <property>
  832. <name>hbase.hregion.majorcompaction.jitter</name>
  833. <value>0.50</value>
  834. <description>Jitter outer bound for major compactions.
  835. On each regionserver, we multiply the hbase.region.majorcompaction
  836. interval by some random fraction that is inside the bounds of this
  837. maximum. We then add this + or - product to when the next
  838. major compaction is to run. The idea is that major compaction
  839. does happen on every regionserver at exactly the same time. The
  840. smaller this number, the closer the compactions come together.
  841. </description>
  842. </property>
  843. <!-- 一个store里面允许存的hfile的个数,超过这个个数会被写到新的一个hfile里面 也即是每个region的每个列族对应的memstore在fulsh为hfile的时候,默认情况下当达到3个hfile的时候就会
  844. 对这些文件进行合并重写为一个新文件,设置个数越大可以减少触发合并的时间,但是每次合并的时间就会越长 -->
  845. <property>
  846. <name>hbase.hstore.compactionThreshold</name>
  847. <value>3</value>
  848. <description>
  849. If more than this number of HStoreFiles in any one HStore
  850. (one HStoreFile is written per flush of memstore) then a compaction
  851. is run to rewrite all HStoreFiles files as one. Larger numbers
  852. put off compaction but when it runs, it takes longer to complete.
  853. </description>
  854. </property>
  855. <!-- 执行flush操作的线程数,设置小了刷新操作会排队,大了会增加底层hdfs的负载压力 -->
  856. <property>
  857. <name>hbase.hstore.flusher.count</name>
  858. <value>2</value>
  859. <description>
  860. The number of flush threads. With less threads, the memstore flushes
  861. will be queued. With
  862. more threads, the flush will be executed in parallel, increasing the hdfs
  863. load. This can
  864. lead as well to more compactions.
  865. </description>
  866. </property>
  867. <!-- 每个store阻塞更新请求的阀值,表示如果当前hstore中文件数大于该值,系统将会强制执行compaction操作进行文件合并, 合并的过程会阻塞整个hstore的写入,这样有个好处是避免compaction操作赶不上Hfile文件的生成速率 -->
  868. <property>
  869. <name>hbase.hstore.blockingStoreFiles</name>
  870. <value>10</value>
  871. <description>
  872. If more than this number of StoreFiles in any one Store
  873. (one StoreFile is written per flush of MemStore) then updates are
  874. blocked for this HRegion until a compaction is completed, or
  875. until hbase.hstore.blockingWaitTime has been exceeded.
  876. </description>
  877. </property>
  878. <!-- 每个store阻塞更新请求的超时时间,如果超过这个时间合并操作还未完成,阻塞也会取消 -->
  879. <property>
  880. <name>hbase.hstore.blockingWaitTime</name>
  881. <value>90000</value>
  882. <description>
  883. The time an HRegion will block updates for after hitting the StoreFile
  884. limit defined by hbase.hstore.blockingStoreFiles.
  885. After this time has elapsed, the HRegion will stop blocking updates even
  886. if a compaction has not been completed.
  887. </description>
  888. </property>
  889. <!-- 每个minor compaction操作的 允许的最大hfile文件上限 -->
  890. <property>
  891. <name>hbase.hstore.compaction.max</name>
  892. <value>10</value>
  893. <description>Max number of HStoreFiles to compact per 'minor'
  894. compaction.</description>
  895. </property>
  896. <!-- 在执行compaction操作的过程中,每次读取hfile文件的keyValue个数 -->
  897. <property>
  898. <name>hbase.hstore.compaction.kv.max</name>
  899. <value>10</value>
  900. <description>How many KeyValues to read and then write in a batch when
  901. flushing
  902. or compacting. Do less if big KeyValues and problems with OOME.
  903. Do more if wide, small rows.
  904. </description>
  905. </property>
  906. <property>
  907. <name>hbase.hstore.time.to.purge.deletes</name>
  908. <value>0</value>
  909. <description>The amount of time to delay purging of delete markers
  910. with future timestamps. If
  911. unset, or set to 0, all delete markers, including those with future
  912. timestamps, are purged
  913. during the next major compaction. Otherwise, a delete marker is kept until
  914. the major compaction
  915. which occurs after the marker's timestamp plus the value of this setting,
  916. in milliseconds.
  917. </description>
  918. </property>
  919. <property>
  920. <name>hbase.storescanner.parallel.seek.enable</name>
  921. <value>false</value>
  922. <description>
  923. Enables StoreFileScanner parallel-seeking in StoreScanner,
  924. a feature which can reduce response latency under special conditions.
  925. </description>
  926. </property>
  927. <property>
  928. <name>hbase.storescanner.parallel.seek.threads</name>
  929. <value>10</value>
  930. <description>
  931. The default thread pool size if parallel-seeking feature enabled.
  932. </description>
  933. </property>
  934. <!--LRUBlockCache块缓存的大小,默认为堆大小的40% -->
  935. <property>
  936. <name>hfile.block.cache.size</name>
  937. <value>0.4</value>
  938. <description>Percentage of maximum heap (-Xmx setting) to allocate to
  939. block cache
  940. used by HFile/StoreFile. Default of 0.4 means allocate 40%.
  941. Set to 0 to disable but it's not recommended; you need at least
  942. enough cache to hold the storefile indices.
  943. </description>
  944. </property>
  945. <property>
  946. <name>hfile.block.index.cacheonwrite</name>
  947. <value>false</value>
  948. <description>This allows to put non-root multi-level index blocks into
  949. the block
  950. cache at the time the index is being written.
  951. </description>
  952. </property>
  953. <property>
  954. <name>hfile.index.block.max.size</name>
  955. <value>131072</value>
  956. <description>When the size of a leaf-level, intermediate-level, or
  957. root-level
  958. index block in a multi-level block index grows to this size, the
  959. block is written out and a new block is started.
  960. </description>
  961. </property>
  962. <!--bucketcache的工作模式,默认有3种可选择,heap,offheap,file。其中heap由jvm分配内存存储,offheap
  963. 由操作系统分配内存存储 -->
  964. <property>
  965. <name>hbase.bucketcache.ioengine</name>
  966. <value></value>
  967. <description>Where to store the contents of the bucketcache. One of:
  968. heap,
  969. offheap, or file. If a file, set it to file:PATH_TO_FILE. See
  970. http://hbase.apache.org/book.html#offheap.blockcache for more
  971. information.
  972. </description>
  973. </property>
  974. <!-- 默认为true,意思是combinedcache里面包括了LRU和bucketcache -->
  975. <property>
  976. <name>hbase.bucketcache.combinedcache.enabled</name>
  977. <value>true</value>
  978. <description>Whether or not the bucketcache is used in league with the
  979. LRU
  980. on-heap block cache. In this mode, indices and blooms are kept in the LRU
  981. blockcache and the data blocks are kept in the bucketcache.
  982. </description>
  983. </property>
  984. <!-- 就是bucketcache大小,如果配置的值在0-1直接,表示占用堆内存的百分比,或者配置XXMB也可 -->
  985. <property>
  986. <name>hbase.bucketcache.size</name>
  987. <value></value>
  988. <description>A float that EITHER represents a percentage of total heap
  989. memory size to give to the cache (if &lt; 1.0) OR, it is the total capacity in megabytes of BucketCache. Default: 0.0
  990. </description>
  991. </property>
  992. <property>
  993. <name>hbase.bucketcache.sizes</name>
  994. <value></value>
  995. <description>A comma-separated list of sizes for buckets for the
  996. bucketcache.
  997. Can be multiple sizes. List block sizes in order from smallest to
  998. largest.
  999. The sizes you use will depend on your data access patterns.
  1000. Must be a multiple of 1024 else you will run into
  1001. 'java.io.IOException: Invalid HFile block magic' when you go to read from cache.
  1002. If you specify no values here, then you pick up the default bucketsizes
  1003. set
  1004. in code (See BucketAllocator#DEFAULT_BUCKET_SIZES).
  1005. </description>
  1006. </property>
  1007. <property>
  1008. <name>hfile.format.version</name>
  1009. <value>3</value>
  1010. <description>The HFile format version to use for new files.
  1011. Version 3 adds support for tags in hfiles (See
  1012. http://hbase.apache.org/book.html#hbase.tags).
  1013. Distributed Log Replay requires that tags are enabled. Also see the
  1014. configuration
  1015. 'hbase.replication.rpc.codec'.
  1016. </description>
  1017. </property>
  1018. <property>
  1019. <name>hfile.block.bloom.cacheonwrite</name>
  1020. <value>false</value>
  1021. <description>Enables cache-on-write for inline blocks of a compound
  1022. Bloom filter.</description>
  1023. </property>
  1024. <property>
  1025. <name>io.storefile.bloom.block.size</name>
  1026. <value>131072</value>
  1027. <description>The size in bytes of a single block ("chunk") of a
  1028. compound Bloom
  1029. filter. This size is approximate, because Bloom blocks can only be
  1030. inserted at data block boundaries, and the number of keys per data
  1031. block varies.
  1032. </description>
  1033. </property>
  1034. <property>
  1035. <name>hbase.rs.cacheblocksonwrite</name>
  1036. <value>false</value>
  1037. <description>Whether an HFile block should be added to the block cache
  1038. when the
  1039. block is finished.
  1040. </description>
  1041. </property>
  1042. <!-- 单次rpc请求的超时时间,如果某次RPC时间超过该值,客户端就会主动关闭socket -->
  1043. <property>
  1044. <name>hbase.rpc.timeout</name>
  1045. <value>60000</value>
  1046. <description>This is for the RPC layer to define how long
  1047. (millisecond) HBase client applications
  1048. take for a remote call to time out. It uses pings to check connections
  1049. but will eventually throw a TimeoutException.
  1050. </description>
  1051. </property>
  1052. <!-- 该参数表示HBase客户端发起一次数据操作(一次操作可能有多次rpc)直至得到响应之间总的超时时间 -->
  1053. <property>
  1054. <name>hbase.client.operation.timeout</name>
  1055. <value>1200000</value>
  1056. <description>Operation timeout is a top-level restriction
  1057. (millisecond) that makes sure a
  1058. blocking operation in Table will not be blocked more than this. In each
  1059. operation, if rpc
  1060. request fails because of timeout or other reason, it will retry until
  1061. success or throw
  1062. RetriesExhaustedException. But if the total time being blocking reach the operation timeout
  1063. before retries exhausted, it will break early and throw
  1064. SocketTimeoutException.
  1065. </description>
  1066. </property>
  1067. <property>
  1068. <name>hbase.cells.scanned.per.heartbeat.check</name>
  1069. <value>10000</value>
  1070. <description>The number of cells scanned in between heartbeat checks.
  1071. Heartbeat
  1072. checks occur during the processing of scans to determine whether or not the
  1073. server should stop scanning in order to send back a heartbeat message
  1074. to the
  1075. client. Heartbeat messages are used to keep the client-server connection
  1076. alive
  1077. during long running scans. Small values mean that the heartbeat checks will
  1078. occur more often and thus will provide a tighter bound on the
  1079. execution time of
  1080. the scan. Larger values mean that the heartbeat checks occur less
  1081. frequently
  1082. </description>
  1083. </property>
  1084. <property>
  1085. <name>hbase.rpc.shortoperation.timeout</name>
  1086. <value>10000</value>
  1087. <description>This is another version of "hbase.rpc.timeout". For those
  1088. RPC operation
  1089. within cluster, we rely on this configuration to set a short timeout
  1090. limitation
  1091. for short operation. For example, short rpc timeout for region server's
  1092. trying
  1093. to report to active master can benefit quicker master failover process.
  1094. </description>
  1095. </property>
  1096. <property>
  1097. <name>hbase.ipc.client.tcpnodelay</name>
  1098. <value>true</value>
  1099. <description>Set no delay on rpc socket connections. See
  1100. http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html#getTcpNoDelay()
  1101. </description>
  1102. </property>
  1103. <property>
  1104. <name>hbase.regionserver.hostname</name>
  1105. <value></value>
  1106. <description>This config is for experts: don't set its value unless
  1107. you really know what you are doing.
  1108. When set to a non-empty value, this represents the (external facing)
  1109. hostname for the underlying server.
  1110. See https://issues.apache.org/jira/browse/HBASE-12954 for details.
  1111. </description>
  1112. </property>
  1113. <!-- The following properties configure authentication information for HBase
  1114. processes when using Kerberos security. There are no default values, included
  1115. here for documentation purposes -->
  1116. <property>
  1117. <name>hbase.master.keytab.file</name>
  1118. <value></value>
  1119. <description>Full path to the kerberos keytab file to use for logging
  1120. in
  1121. the configured HMaster server principal.
  1122. </description>
  1123. </property>
  1124. <property>
  1125. <name>hbase.master.kerberos.principal</name>
  1126. <value></value>
  1127. <description>Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal
  1128. name
  1129. that should be used to run the HMaster process. The principal name should
  1130. be in the form: user/hostname@DOMAIN. If "_HOST" is used as the
  1131. hostname
  1132. portion, it will be replaced with the actual hostname of the running
  1133. instance.
  1134. </description>
  1135. </property>
  1136. <property>
  1137. <name>hbase.regionserver.keytab.file</name>
  1138. <value></value>
  1139. <description>Full path to the kerberos keytab file to use for logging
  1140. in
  1141. the configured HRegionServer server principal.
  1142. </description>
  1143. </property>
  1144. <property>
  1145. <name>hbase.regionserver.kerberos.principal</name>
  1146. <value></value>
  1147. <description>Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal
  1148. name
  1149. that should be used to run the HRegionServer process. The principal name
  1150. should be in the form: user/hostname@DOMAIN. If "_HOST" is used as
  1151. the
  1152. hostname portion, it will be replaced with the actual hostname of the
  1153. running instance. An entry for this principal must exist in the file
  1154. specified in hbase.regionserver.keytab.file
  1155. </description>
  1156. </property>
  1157. <!-- Additional configuration specific to HBase security -->
  1158. <property>
  1159. <name>hadoop.policy.file</name>
  1160. <value>hbase-policy.xml</value>
  1161. <description>The policy configuration file used by RPC servers to make
  1162. authorization decisions on client requests. Only used when HBase
  1163. security is enabled.
  1164. </description>
  1165. </property>
  1166. <property>
  1167. <name>hbase.superuser</name>
  1168. <value></value>
  1169. <description>List of users or groups (comma-separated), who are
  1170. allowed
  1171. full privileges, regardless of stored ACLs, across the cluster.
  1172. Only used when HBase security is enabled.
  1173. </description>
  1174. </property>
  1175. <property>
  1176. <name>hbase.auth.key.update.interval</name>
  1177. <value>86400000</value>
  1178. <description>The update interval for master key for authentication
  1179. tokens
  1180. in servers in milliseconds. Only used when HBase security is enabled.
  1181. </description>
  1182. </property>
  1183. <property>
  1184. <name>hbase.auth.token.max.lifetime</name>
  1185. <value>604800000</value>
  1186. <description>The maximum lifetime in milliseconds after which an
  1187. authentication token expires. Only used when HBase security is
  1188. enabled.
  1189. </description>
  1190. </property>
  1191. <property>
  1192. <name>hbase.ipc.client.fallback-to-simple-auth-allowed</name>
  1193. <value>false</value>
  1194. <description>When a client is configured to attempt a secure
  1195. connection, but attempts to
  1196. connect to an insecure server, that server may instruct the client to
  1197. switch to SASL SIMPLE (unsecure) authentication. This setting controls
  1198. whether or not the client will accept this instruction from the
  1199. server.
  1200. When false (the default), the client will not allow the fallback to
  1201. SIMPLE
  1202. authentication, and will abort the connection.
  1203. </description>
  1204. </property>
  1205. <property>
  1206. <name>hbase.ipc.server.fallback-to-simple-auth-allowed</name>
  1207. <value>false</value>
  1208. <description>When a server is configured to require secure
  1209. connections, it will
  1210. reject connection attempts from clients using SASL SIMPLE (unsecure)
  1211. authentication.
  1212. This setting allows secure servers to accept SASL SIMPLE connections from
  1213. clients
  1214. when the client requests. When false (the default), the server will not
  1215. allow the fallback
  1216. to SIMPLE authentication, and will reject the connection. WARNING: This
  1217. setting should ONLY
  1218. be used as a temporary measure while converting clients over to secure
  1219. authentication. It
  1220. MUST BE DISABLED for secure operation.
  1221. </description>
  1222. </property>
  1223. <property>
  1224. <name>hbase.coprocessor.enabled</name>
  1225. <value>true</value>
  1226. <description>Enables or disables coprocessor loading. If 'false'
  1227. (disabled), any other coprocessor related configuration will be
  1228. ignored.
  1229. </description>
  1230. </property>
  1231. <property>
  1232. <name>hbase.coprocessor.user.enabled</name>
  1233. <value>true</value>
  1234. <description>Enables or disables user (aka. table) coprocessor
  1235. loading.
  1236. If 'false' (disabled), any table coprocessor attributes in table
  1237. descriptors will be ignored. If "hbase.coprocessor.enabled" is
  1238. 'false'
  1239. this setting has no effect.
  1240. </description>
  1241. </property>
  1242. <property>
  1243. <name>hbase.coprocessor.region.classes</name>
  1244. <value></value>
  1245. <description>A comma-separated list of Coprocessors that are loaded by
  1246. default on all tables. For any override coprocessor method, these
  1247. classes
  1248. will be called in order. After implementing your own Coprocessor, just
  1249. put
  1250. it in HBase's classpath and add the fully qualified class name here.
  1251. A coprocessor can also be loaded on demand by setting
  1252. HTableDescriptor.
  1253. </description>
  1254. </property>
  1255. <property>
  1256. <name>hbase.rest.port</name>
  1257. <value>8080</value>
  1258. <description>The port for the HBase REST server.</description>
  1259. </property>
  1260. <property>
  1261. <name>hbase.rest.readonly</name>
  1262. <value>false</value>
  1263. <description>Defines the mode the REST server will be started in.
  1264. Possible values are:
  1265. false: All HTTP methods are permitted - GET/PUT/POST/DELETE.
  1266. true: Only the GET method is permitted.
  1267. </description>
  1268. </property>
  1269. <property>
  1270. <name>hbase.rest.threads.max</name>
  1271. <value>100</value>
  1272. <description>The maximum number of threads of the REST server thread
  1273. pool.
  1274. Threads in the pool are reused to process REST requests. This
  1275. controls the maximum number of requests processed concurrently.
  1276. It may help to control the memory used by the REST server to
  1277. avoid OOM issues. If the thread pool is full, incoming requests
  1278. will be queued up and wait for some free threads.
  1279. </description>
  1280. </property>
  1281. <property>
  1282. <name>hbase.rest.threads.min</name>
  1283. <value>2</value>
  1284. <description>The minimum number of threads of the REST server thread
  1285. pool.
  1286. The thread pool always has at least these number of threads so
  1287. the REST server is ready to serve incoming requests.
  1288. </description>
  1289. </property>
  1290. <property>
  1291. <name>hbase.rest.support.proxyuser</name>
  1292. <value>false</value>
  1293. <description>Enables running the REST server to support proxy-user
  1294. mode.</description>
  1295. </property>
  1296. <property skipInDoc="true">
  1297. <name>hbase.defaults.for.version</name>
  1298. <value>1.2.3</value>
  1299. <description>This defaults file was compiled for version
  1300. ${project.version}. This variable is used
  1301. to make sure that a user doesn't have an old version of
  1302. hbase-default.xml on the
  1303. classpath.
  1304. </description>
  1305. </property>
  1306. <property>
  1307. <name>hbase.defaults.for.version.skip</name>
  1308. <value>false</value>
  1309. <description>Set to true to skip the 'hbase.defaults.for.version'
  1310. check.
  1311. Setting this to true can be useful in contexts other than
  1312. the other side of a maven generation; i.e. running in an
  1313. ide. You'll want to set this boolean to true to avoid
  1314. seeing the RuntimException complaint: "hbase-default.xml file
  1315. seems to be for and old version of HBase (\${hbase.version}), this
  1316. version is X.X.X-SNAPSHOT"
  1317. </description>
  1318. </property>
  1319. <property>
  1320. <name>hbase.coprocessor.master.classes</name>
  1321. <value></value>
  1322. <description>A comma-separated list of
  1323. org.apache.hadoop.hbase.coprocessor.MasterObserver coprocessors that
  1324. are
  1325. loaded by default on the active HMaster process. For any implemented
  1326. coprocessor methods, the listed classes will be called in order.
  1327. After
  1328. implementing your own MasterObserver, just put it in HBase's classpath
  1329. and add the fully qualified class name here.
  1330. </description>
  1331. </property>
  1332. <property>
  1333. <name>hbase.coprocessor.abortonerror</name>
  1334. <value>true</value>
  1335. <description>Set to true to cause the hosting server (master or
  1336. regionserver)
  1337. to abort if a coprocessor fails to load, fails to initialize, or throws
  1338. an
  1339. unexpected Throwable object. Setting this to false will allow the server to
  1340. continue execution but the system wide state of the coprocessor in
  1341. question
  1342. will become inconsistent as it will be properly executing in only a
  1343. subset
  1344. of servers, so this is most useful for debugging only.
  1345. </description>
  1346. </property>
  1347. <property>
  1348. <name>hbase.online.schema.update.enable</name>
  1349. <value>true</value>
  1350. <description>Set true to enable online schema changes.</description>
  1351. </property>
  1352. <property>
  1353. <name>hbase.table.lock.enable</name>
  1354. <value>true</value>
  1355. <description>Set to true to enable locking the table in zookeeper for
  1356. schema change operations.
  1357. Table locking from master prevents concurrent schema modifications to
  1358. corrupt table
  1359. state.
  1360. </description>
  1361. </property>
  1362. <!-- hbase table单行row的最大大小 -->
  1363. <property>
  1364. <name>hbase.table.max.rowsize</name>
  1365. <value>1073741824</value>
  1366. <description>
  1367. Maximum size of single row in bytes (default is 1 Gb) for Get'ting
  1368. or Scan'ning without in-row scan flag set. If row size exceeds this
  1369. limit
  1370. RowTooBigException is thrown to client.
  1371. </description>
  1372. </property>
  1373. <property>
  1374. <name>hbase.thrift.minWorkerThreads</name>
  1375. <value>16</value>
  1376. <description>The "core size" of the thread pool. New threads are
  1377. created on every
  1378. connection until this many threads are created.
  1379. </description>
  1380. </property>
  1381. <property>
  1382. <name>hbase.thrift.maxWorkerThreads</name>
  1383. <value>1000</value>
  1384. <description>The maximum size of the thread pool. When the pending
  1385. request queue
  1386. overflows, new threads are created until their number reaches this number.
  1387. After that, the server starts dropping connections.
  1388. </description>
  1389. </property>
  1390. <property>
  1391. <name>hbase.thrift.maxQueuedRequests</name>
  1392. <value>1000</value>
  1393. <description>The maximum number of pending Thrift connections waiting
  1394. in the queue. If
  1395. there are no idle threads in the pool, the server queues requests. Only
  1396. when the queue overflows, new threads are added, up to
  1397. hbase.thrift.maxQueuedRequests threads.
  1398. </description>
  1399. </property>
  1400. <property>
  1401. <name>hbase.thrift.htablepool.size.max</name>
  1402. <value>1000</value>
  1403. <description>The upper bound for the table pool used in the Thrift
  1404. gateways server.
  1405. Since this is per table name, we assume a single table and so with 1000
  1406. default
  1407. worker threads max this is set to a matching number. For other workloads
  1408. this number
  1409. can be adjusted as needed.
  1410. </description>
  1411. </property>
  1412. <property>
  1413. <name>hbase.regionserver.thrift.framed</name>
  1414. <value>false</value>
  1415. <description>Use Thrift TFramedTransport on the server side.
  1416. This is the recommended transport for thrift servers and requires a
  1417. similar setting
  1418. on the client side. Changing this to false will select the default
  1419. transport,
  1420. vulnerable to DoS when malformed requests are issued due to THRIFT-601.
  1421. </description>
  1422. </property>
  1423. <property>
  1424. <name>hbase.regionserver.thrift.framed.max_frame_size_in_mb</name>
  1425. <value>2</value>
  1426. <description>Default frame size when using framed transport
  1427. </description>
  1428. </property>
  1429. <property>
  1430. <name>hbase.regionserver.thrift.compact</name>
  1431. <value>false</value>
  1432. <description>Use Thrift TCompactProtocol binary serialization
  1433. protocol.</description>
  1434. </property>
  1435. <property>
  1436. <name>hbase.rootdir.perms</name>
  1437. <value>700</value>
  1438. <description>FS Permissions for the root directory in a
  1439. secure(kerberos) setup.
  1440. When master starts, it creates the rootdir with this permissions or sets
  1441. the permissions
  1442. if it does not match.
  1443. </description>
  1444. </property>
  1445. <property>
  1446. <name>hbase.data.umask.enable</name>
  1447. <value>false</value>
  1448. <description>Enable, if true, that file permissions should be assigned
  1449. to the files written by the regionserver
  1450. </description>
  1451. </property>
  1452. <property>
  1453. <name>hbase.data.umask</name>
  1454. <value>000</value>
  1455. <description>File permissions that should be used to write data
  1456. files when hbase.data.umask.enable is true
  1457. </description>
  1458. </property>
  1459. <property>
  1460. <name>hbase.metrics.showTableName</name>
  1461. <value>true</value>
  1462. <description>Whether to include the prefix "tbl.tablename" in
  1463. per-column family metrics.
  1464. If true, for each metric M, per-cf metrics will be reported for
  1465. tbl.T.cf.CF.M, if false,
  1466. per-cf metrics will be aggregated by column-family across tables, and
  1467. reported for cf.CF.M.
  1468. In both cases, the aggregated metric M across tables and cfs will be
  1469. reported.
  1470. </description>
  1471. </property>
  1472. <property>
  1473. <name>hbase.metrics.exposeOperationTimes</name>
  1474. <value>true</value>
  1475. <description>Whether to report metrics about time taken performing an
  1476. operation on the region server. Get, Put, Delete, Increment, and
  1477. Append can all
  1478. have their times exposed through Hadoop metrics per CF and per region.
  1479. </description>
  1480. </property>
  1481. <!-- 允许快照被使用 -->
  1482. -->
  1483. <property>
  1484. <name>hbase.snapshot.enabled</name>
  1485. <value>true</value>
  1486. <description>Set to true to allow snapshots to be taken / restored /
  1487. cloned.</description>
  1488. </property>
  1489. <!-- 在hbase重启的时候,如果重启失败了,则使用快照代替,同时成功后删除快照 -->
  1490. <property>
  1491. <name>hbase.snapshot.restore.take.failsafe.snapshot</name>
  1492. <value>true</value>
  1493. <description>Set to true to take a snapshot before the restore
  1494. operation.
  1495. The snapshot taken will be used in case of failure, to restore the
  1496. previous state.
  1497. At the end of the restore operation this snapshot will be deleted
  1498. </description>
  1499. </property>
  1500. <property>
  1501. <name>hbase.snapshot.restore.failsafe.name</name>
  1502. <value>hbase-failsafe-{snapshot.name}-{restore.timestamp}</value>
  1503. <description>Name of the failsafe snapshot taken by the restore
  1504. operation.
  1505. You can use the {snapshot.name}, {table.name} and {restore.timestamp}
  1506. variables
  1507. to create a name based on what you are restoring.
  1508. </description>
  1509. </property>
  1510. <!-- hbase.server.compactchecker.interval.multiplier * hbase.server.thread.wakefrequency
  1511. 后台线程每隔多久定期检查是否需要执行compaction -->
  1512. <property>
  1513. <name>hbase.server.compactchecker.interval.multiplier</name>
  1514. <value>1000</value>
  1515. <description>The number that determines how often we scan to see if
  1516. compaction is necessary.
  1517. Normally, compactions are done after some events (such as memstore flush), but
  1518. if
  1519. region didn't receive a lot of writes for some time, or due to different
  1520. compaction
  1521. policies, it may be necessary to check it periodically. The interval between
  1522. checks is
  1523. hbase.server.compactchecker.interval.multiplier multiplied by
  1524. hbase.server.thread.wakefrequency.
  1525. </description>
  1526. </property>
  1527. <property>
  1528. <name>hbase.lease.recovery.timeout</name>
  1529. <value>900000</value>
  1530. <description>How long we wait on dfs lease recovery in total before
  1531. giving up.</description>
  1532. </property>
  1533. <property>
  1534. <name>hbase.lease.recovery.dfs.timeout</name>
  1535. <value>64000</value>
  1536. <description>How long between dfs recover lease invocations. Should be
  1537. larger than the sum of
  1538. the time it takes for the namenode to issue a block recovery command as
  1539. part of
  1540. datanode; dfs.heartbeat.interval and the time it takes for the primary
  1541. datanode, performing block recovery to timeout on a dead datanode;
  1542. usually
  1543. dfs.client.socket-timeout. See the end of HBASE-8389 for more.
  1544. </description>
  1545. </property>
  1546. <!-- hbase colume最大的版本数 -->
  1547. <property>
  1548. <name>hbase.column.max.version</name>
  1549. <value>1</value>
  1550. <description>New column family descriptors will use this value as the
  1551. default number of versions
  1552. to keep.
  1553. </description>
  1554. </property>
  1555. <property>
  1556. <name>hbase.dfs.client.read.shortcircuit.buffer.size</name>
  1557. <value>131072</value>
  1558. <description>If the DFSClient configuration
  1559. dfs.client.read.shortcircuit.buffer.size is unset, we will
  1560. use what is configured here as the short circuit read default
  1561. direct byte buffer size. DFSClient native default is 1MB; HBase
  1562. keeps its HDFS files open so number of file blocks * 1MB soon
  1563. starts to add up and threaten OOME because of a shortage of
  1564. direct memory. So, we set it down from the default. Make
  1565. it > the default hbase block size set in the HColumnDescriptor
  1566. which is usually 64k.
  1567. </description>
  1568. </property>
  1569. <property>
  1570. <name>hbase.regionserver.checksum.verify</name>
  1571. <value>true</value>
  1572. <description>
  1573. If set to true (the default), HBase verifies the checksums for hfile
  1574. blocks. HBase writes checksums inline with the data when it writes
  1575. out
  1576. hfiles. HDFS (as of this writing) writes checksums to a separate file
  1577. than the data file necessitating extra seeks. Setting this flag saves
  1578. some on i/o. Checksum verification by HDFS will be internally
  1579. disabled
  1580. on hfile streams when this flag is set. If the hbase-checksum
  1581. verification
  1582. fails, we will switch back to using HDFS checksums (so do not disable HDFS
  1583. checksums! And besides this feature applies to hfiles only, not to
  1584. WALs).
  1585. If this parameter is set to false, then hbase will not verify any
  1586. checksums,
  1587. instead it will depend on checksum verification being done in the HDFS
  1588. client.
  1589. </description>
  1590. </property>
  1591. <property>
  1592. <name>hbase.hstore.bytes.per.checksum</name>
  1593. <value>16384</value>
  1594. <description>
  1595. Number of bytes in a newly created checksum chunk for HBase-level
  1596. checksums in hfile blocks.
  1597. </description>
  1598. </property>
  1599. <property>
  1600. <name>hbase.hstore.checksum.algorithm</name>
  1601. <value>CRC32C</value>
  1602. <description>
  1603. Name of an algorithm that is used to compute checksums. Possible values
  1604. are NULL, CRC32, CRC32C.
  1605. </description>
  1606. </property>
  1607. <!-- hbase客户端scan操作的时候,每次远程调用返回的最大字节数,默认是2M, 用来限制client从HRegionServer取到的bytes总数,bytes总数通过row的KeyValue计算得出 -->
  1608. <property>
  1609. <name>hbase.client.scanner.max.result.size</name>
  1610. <value>2097152</value>
  1611. <description>Maximum number of bytes returned when calling a scanner's
  1612. next method.
  1613. Note that when a single row is larger than this limit the row is still
  1614. returned completely.
  1615. The default value is 2MB, which is good for 1ge networks.
  1616. With faster and/or high latency networks this value should be increased.
  1617. </description>
  1618. </property>
  1619. <!-- hbase服务端对scan请求返回的结果大小做限制 -->
  1620. <property>
  1621. <name>hbase.server.scanner.max.result.size</name>
  1622. <value>104857600</value>
  1623. <description>Maximum number of bytes returned when calling a scanner's
  1624. next method.
  1625. Note that when a single row is larger than this limit the row is still
  1626. returned completely.
  1627. The default value is 100MB.
  1628. This is a safety setting to protect the server from OOM situations.
  1629. </description>
  1630. </property>
  1631. <property>
  1632. <name>hbase.status.published</name>
  1633. <value>false</value>
  1634. <description>
  1635. This setting activates the publication by the master of the status of the
  1636. region server.
  1637. When a region server dies and its recovery starts, the master will push
  1638. this information
  1639. to the client application, to let them cut the connection immediately
  1640. instead of waiting
  1641. for a timeout.
  1642. </description>
  1643. </property>
  1644. <property>
  1645. <name>hbase.status.publisher.class</name>
  1646. <value>org.apache.hadoop.hbase.master.ClusterStatusPublisher$MulticastPublisher
  1647. </value>
  1648. <description>
  1649. Implementation of the status publication with a multicast message.
  1650. </description>
  1651. </property>
  1652. <property>
  1653. <name>hbase.status.listener.class</name>
  1654. <value>org.apache.hadoop.hbase.client.ClusterStatusListener$MulticastListener
  1655. </value>
  1656. <description>
  1657. Implementation of the status listener with a multicast message.
  1658. </description>
  1659. </property>
  1660. <property>
  1661. <name>hbase.status.multicast.address.ip</name>
  1662. <value>226.1.1.3</value>
  1663. <description>
  1664. Multicast address to use for the status publication by multicast.
  1665. </description>
  1666. </property>
  1667. <property>
  1668. <name>hbase.status.multicast.address.port</name>
  1669. <value>16100</value>
  1670. <description>
  1671. Multicast port to use for the status publication by multicast.
  1672. </description>
  1673. </property>
  1674. <property>
  1675. <name>hbase.dynamic.jars.dir</name>
  1676. <value>${hbase.rootdir}/lib</value>
  1677. <description>
  1678. The directory from which the custom filter/co-processor jars can be
  1679. loaded
  1680. dynamically by the region server without the need to restart. However,
  1681. an already loaded filter/co-processor class would not be un-loaded. See
  1682. HBASE-1936 for more details.
  1683. </description>
  1684. </property>
  1685. <property>
  1686. <name>hbase.security.authentication</name>
  1687. <value>simple</value>
  1688. <description>
  1689. Controls whether or not secure authentication is enabled for HBase.
  1690. Possible values are 'simple' (no authentication), and 'kerberos'.
  1691. </description>
  1692. </property>
  1693. <property>
  1694. <name>hbase.rest.filter.classes</name>
  1695. <value>org.apache.hadoop.hbase.rest.filter.GzipFilter</value>
  1696. <description>
  1697. Servlet filters for REST service.
  1698. </description>
  1699. </property>
  1700. <property>
  1701. <name>hbase.master.loadbalancer.class</name>
  1702. <value>org.apache.hadoop.hbase.master.balancer.StochasticLoadBalancer
  1703. </value>
  1704. <description>
  1705. Class used to execute the regions balancing when the period occurs.
  1706. See the class comment for more on how it works
  1707. http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html
  1708. It replaces the DefaultLoadBalancer as the default (since renamed
  1709. as the SimpleLoadBalancer).
  1710. </description>
  1711. </property>
  1712. <property>
  1713. <name>hbase.security.exec.permission.checks</name>
  1714. <value>false</value>
  1715. <description>
  1716. If this setting is enabled and ACL based access control is active (the
  1717. AccessController coprocessor is installed either as a system
  1718. coprocessor
  1719. or on a table as a table coprocessor) then you must grant all relevant
  1720. users EXEC privilege if they require the ability to execute
  1721. coprocessor
  1722. endpoint calls. EXEC privilege, like any other permission, can be
  1723. granted globally to a user, or to a user on a per table or per namespace
  1724. basis. For more information on coprocessor endpoints, see the
  1725. coprocessor
  1726. section of the HBase online manual. For more information on granting or
  1727. revoking permissions using the AccessController, see the security
  1728. section of the HBase online manual.
  1729. </description>
  1730. </property>
  1731. <property>
  1732. <name>hbase.procedure.regionserver.classes</name>
  1733. <value></value>
  1734. <description>A comma-separated list of
  1735. org.apache.hadoop.hbase.procedure.RegionServerProcedureManager
  1736. procedure managers that are
  1737. loaded by default on the active HRegionServer process. The lifecycle
  1738. methods (init/start/stop)
  1739. will be called by the active HRegionServer process to perform the
  1740. specific globally barriered
  1741. procedure. After implementing your own RegionServerProcedureManager, just put
  1742. it in
  1743. HBase's classpath and add the fully qualified class name here.
  1744. </description>
  1745. </property>
  1746. <property>
  1747. <name>hbase.procedure.master.classes</name>
  1748. <value></value>
  1749. <description>A comma-separated list of
  1750. org.apache.hadoop.hbase.procedure.MasterProcedureManager procedure
  1751. managers that are
  1752. loaded by default on the active HMaster process. A procedure is identified
  1753. by its signature and
  1754. users can use the signature and an instant name to trigger an execution of
  1755. a globally barriered
  1756. procedure. After implementing your own MasterProcedureManager, just put it in
  1757. HBase's classpath
  1758. and add the fully qualified class name here.
  1759. </description>
  1760. </property>
  1761. <property>
  1762. <name>hbase.coordinated.state.manager.class</name>
  1763. <value>org.apache.hadoop.hbase.coordination.ZkCoordinatedStateManager
  1764. </value>
  1765. <description>Fully qualified name of class implementing coordinated
  1766. state manager.</description>
  1767. </property>
  1768. <property>
  1769. <name>hbase.regionserver.storefile.refresh.period</name>
  1770. <value>0</value>
  1771. <description>
  1772. The period (in milliseconds) for refreshing the store files for the
  1773. secondary regions. 0
  1774. means this feature is disabled. Secondary regions sees new files (from
  1775. flushes and
  1776. compactions) from primary once the secondary region refreshes the list of files
  1777. in the
  1778. region (there is no notification mechanism). But too frequent refreshes
  1779. might cause
  1780. extra Namenode pressure. If the files cannot be refreshed for longer than
  1781. HFile TTL
  1782. (hbase.master.hfilecleaner.ttl) the requests are rejected. Configuring HFile TTL to a larger
  1783. value is also recommended with this setting.
  1784. </description>
  1785. </property>
  1786. <property>
  1787. <name>hbase.region.replica.replication.enabled</name>
  1788. <value>false</value>
  1789. <description>
  1790. Whether asynchronous WAL replication to the secondary region replicas is
  1791. enabled or not.
  1792. If this is enabled, a replication peer named
  1793. "region_replica_replication" will be created
  1794. which will tail the logs and replicate the mutatations to region replicas
  1795. for tables that
  1796. have region replication > 1. If this is enabled once, disabling this
  1797. replication also
  1798. requires disabling the replication peer using shell or ReplicationAdmin java
  1799. class.
  1800. Replication to secondary region replicas works over standard inter-cluster
  1801. replication.
  1802. So replication, if disabled explicitly, also has to be enabled by
  1803. setting "hbase.replication"
  1804. to true for this feature to work.
  1805. </description>
  1806. </property>
  1807. <property>
  1808. <name>hbase.http.filter.initializers</name>
  1809. <value>org.apache.hadoop.hbase.http.lib.StaticUserWebFilter</value>
  1810. <description>
  1811. A comma separated list of class names. Each class in the list must
  1812. extend
  1813. org.apache.hadoop.hbase.http.FilterInitializer. The corresponding Filter will
  1814. be initialized. Then, the Filter will be applied to all user facing jsp
  1815. and servlet web pages.
  1816. The ordering of the list defines the ordering of the filters.
  1817. The default StaticUserWebFilter add a user principal as defined by the
  1818. hbase.http.staticuser.user property.
  1819. </description>
  1820. </property>
  1821. <property>
  1822. <name>hbase.security.visibility.mutations.checkauths</name>
  1823. <value>false</value>
  1824. <description>
  1825. This property if enabled, will check whether the labels in the visibility
  1826. expression are associated
  1827. with the user issuing the mutation
  1828. </description>
  1829. </property>
  1830. <property>
  1831. <name>hbase.http.max.threads</name>
  1832. <value>10</value>
  1833. <description>
  1834. The maximum number of threads that the HTTP Server will create in its
  1835. ThreadPool.
  1836. </description>
  1837. </property>
  1838. <property>
  1839. <name>hbase.replication.rpc.codec</name>
  1840. <value>org.apache.hadoop.hbase.codec.KeyValueCodecWithTags</value>
  1841. <description>
  1842. The codec that is to be used when replication is enabled so that
  1843. the tags are also replicated. This is used along with HFileV3 which
  1844. supports tags in them. If tags are not used or if the hfile version
  1845. used
  1846. is HFileV2 then KeyValueCodec can be used as the replication codec.
  1847. Note that
  1848. using KeyValueCodecWithTags for replication when there are no tags causes
  1849. no harm.
  1850. </description>
  1851. </property>
  1852. <property>
  1853. <name>hbase.replication.source.maxthreads</name>
  1854. <value>10</value>
  1855. <description>
  1856. The maximum number of threads any replication source will use for
  1857. shipping edits to the sinks in parallel. This also limits the number
  1858. of
  1859. chunks each replication batch is broken into.
  1860. Larger values can improve the replication throughput between the master and
  1861. slave clusters. The default of 10 will rarely need to be changed.
  1862. </description>
  1863. </property>
  1864. <!-- Static Web User Filter properties. -->
  1865. <property>
  1866. <description>
  1867. The user name to filter as, on static web filters
  1868. while rendering content. An example use is the HDFS
  1869. web UI (user to be used for browsing files).
  1870. </description>
  1871. <name>hbase.http.staticuser.user</name>
  1872. <value>dr.stack</value>
  1873. </property>
  1874. <property>
  1875. <name>hbase.master.normalizer.class</name>
  1876. <value>org.apache.hadoop.hbase.master.normalizer.SimpleRegionNormalizer
  1877. </value>
  1878. <description>
  1879. Class used to execute the region normalization when the period occurs.
  1880. See the class comment for more on how it works
  1881. http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/normalizer/SimpleRegionNormalizer.html
  1882. </description>
  1883. </property>
  1884. <property>
  1885. <name>hbase.regionserver.handler.abort.on.error.percent</name>
  1886. <value>0.5</value>
  1887. <description>The percent of region server RPC threads failed to abort
  1888. RS.
  1889. -1 Disable aborting; 0 Abort if even a single handler has died;
  1890. 0.x Abort only when this percent of handlers have died;
  1891. 1 Abort only all of the handers have died.
  1892. </description>
  1893. </property>
  1894. <property>
  1895. <name>hbase.snapshot.master.timeout.millis</name>
  1896. <value>300000</value>
  1897. <description>
  1898. Timeout for master for the snapshot procedure execution
  1899. </description>
  1900. </property>
  1901. <property>
  1902. <name>hbase.snapshot.region.timeout</name>
  1903. <value>300000</value>
  1904. <description>
  1905. Timeout for regionservers to keep threads in snapshot request pool waiting
  1906. </description>
  1907. </property>
  1908. </configuration>