背景概念
乱序(out-of-order)
什么是乱序呢?可以理解为数据到达的顺序和其实际产生时间的排序不一致。导致这的原因有很多,比如延迟,消息积压,重试等等。
我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的。虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、背压等原因,导致乱序的产生(out-of-order或者说late element)。
窗口概念
时间概念
- ProcessingTime(事件的处理时间)
ProcessingTime是数据流入到具体某个算子时候相应的系统时间。ProcessingTime 有最好的性能和最低的延迟。但在分布式计算环境中ProcessingTime具有不确定性,相同数据流多次运行有可能产生不同的计算结果。
- IngestionTime(事件流入系统的时间)
IngestionTime是数据进入Apache Flink框架的时间,是在Source Operator中设置的。与ProcessingTime相比可以提供更可预测的结果,因为IngestionTime的时间戳比较稳定(在源处只记录一次),同一数据在流经不同窗口操作时将使用相同的时间戳,而对于ProcessingTime同一数据在流经不同窗口算子会有不同的处理时间戳。
- EventTime(事件的产生时间)
EventTime是事件在设备上产生时候携带的。在进入Apache Flink框架之前EventTime通常要嵌入到记录中,并且EventTime也可以从记录中提取出来。在实际的网上购物订单等业务场景中,大多会使用EventTime来进行数据计算。
Watermark概念
Watermark是Apache Flink为了处理EventTime 窗口计算提出的一种机制,本质上也是一种时间戳,由Apache Flink Source或者自定义的Watermark生成器按照需求Punctuated或者Periodic两种方式生成的一种系统Event,与普通数据流Event一样流转到对应的下游算子,接收到Watermark Event的算子以此不断调整自己管理的EventTime clock。 Apache Flink 框架保证Watermark单调递增,算子接收到一个Watermark时候,框架知道不会再有任何小于该Watermark的时间戳的数据元素到来了,所以Watermark可以看做是告诉Apache Flink框架数据流已经处理到什么位置(时间维度)的方式。
Watermark特点
WaterMark设定方法
标点水位线(Punctuated Watermark)
标点水位线(Punctuated Watermark)通过数据流中某些特殊标记事件来触发新水位线的生成。这种方式下窗口的触发与时间无关,而是决定于何时收到标记事件。
在实际的生产中Punctuated方式在TPS很高的场景下会产生大量的Watermark在一定程度上对下游算子造成压力,所以只有在实时性要求非常高的场景才会选择Punctuated的方式进行Watermark的生成。
定期水位线(Periodic Watermark)
周期性的(允许一定时间间隔或者达到一定的记录条数)产生一个Watermark。水位线提升的时间间隔是由用户设置的,在两次水位线提升时隔内会有一部分消息流入,用户可以根据这部分数据来计算出新的水位线。
在实际的生产中Periodic的方式必须结合时间和积累条数两个维度继续周期性产生Watermark,否则在极端情况下会有很大的延时。
举个例子,最简单的水位线算法就是取目前为止最大的事件时间,然而这种方式比较暴力,对乱序事件的容忍程度比较低,容易出现大量迟到事件。
Watermark的类型
有序的流的watermarks
无序的流的watermarks
多并行度流的watermarks
注意:多并行度的情况下,watermark对齐会取所有channel最小的watermark
参考
博文:Apache Flink 漫谈系列 - Watermark
https://www.codercto.com/a/30490.html
博文:Flink Time和Watermark的理解
https://www.jianshu.com/p/2e87abfe89ff
示例:Flink WaterMark实例
http://www.louisvv.com/archives/2225.html