https://pytorch-lightning.readthedocs.io/en/latest/starter/introduction_guide.html
模型部分
定义模型
设计一个三层的神经网络,定义类时继承自LightningModule
对比:Pytorch中直接定义网络时,继承自nn.Module
import torch
from torch.nn import functional as F
from torch import nn
from pytorch_lightning.core.lightning import LightningModule
class LitMNIST(LightningModule):
def __init__(self):
super().__init__()
# mnist images are (1, 28, 28) (channels, height, width)
self.layer_1 = nn.Linear(28 * 28, 128)
self.layer_2 = nn.Linear(128, 256)
self.layer_3 = nn.Linear(256, 10)
def forward(self, x):
batch_size, channels, height, width = x.size()
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
x = self.layer_1(x)
x = F.relu(x)
x = self.layer_2(x)
x = F.relu(x)
x = self.layer_3(x)
x = F.log_softmax(x, dim=1)
return x
LightningModule 和 Pytorch里的模块相同的,但增加了一些功能
实例化的用法相同
net = LitMNIST()
x = torch.randn(1, 1, 28, 28)
out = net(x)
print(out.shape)
训练
增加training_step
class LitMNIST(LightningModule):
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
return loss
优化器Optimizer
Pytorch里面用法
from torch.optim import Adam
optimizer = Adam(LitMNIST().parameters(), lr=1e-3)
Lightning里面重新定义configure_optimizers()
方法
class LitMNIST(LightningModule):
def configure_optimizers(self):
return Adam(self.parameters(), lr=1e-3)
如果有学习率的变化
from torch.optim.lr_scheduler import CosineAnnealingLR
class LitMNIST(LightningModule):
def configure_optimizers(self):
opt = Adam(self.parameters(), lr=1e-3)
scheduler = CosineAnnealingLR(opt, T_max=10)
return [opt], [scheduler]
数据
Pytorch里加载数据
主要是使用Datasets
和DataLoader
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import os
from torchvision import datasets, transforms
from pytorch_lightning import Trainer
# transforms
# prepare transforms standard to MNIST
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
# data
mnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform)
mnist_train = DataLoader(mnist_train, batch_size=64)