https://pytorch-lightning.readthedocs.io/en/latest/starter/introduction_guide.html
模型部分
定义模型
设计一个三层的神经网络,定义类时继承自LightningModule
对比:Pytorch中直接定义网络时,继承自nn.Module
import torchfrom torch.nn import functional as Ffrom torch import nnfrom pytorch_lightning.core.lightning import LightningModuleclass LitMNIST(LightningModule):def __init__(self):super().__init__()# mnist images are (1, 28, 28) (channels, height, width)self.layer_1 = nn.Linear(28 * 28, 128)self.layer_2 = nn.Linear(128, 256)self.layer_3 = nn.Linear(256, 10)def forward(self, x):batch_size, channels, height, width = x.size()# (b, 1, 28, 28) -> (b, 1*28*28)x = x.view(batch_size, -1)x = self.layer_1(x)x = F.relu(x)x = self.layer_2(x)x = F.relu(x)x = self.layer_3(x)x = F.log_softmax(x, dim=1)return x
LightningModule 和 Pytorch里的模块相同的,但增加了一些功能
实例化的用法相同
net = LitMNIST()x = torch.randn(1, 1, 28, 28)out = net(x)print(out.shape)
训练
增加training_step
class LitMNIST(LightningModule):def training_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = F.nll_loss(logits, y)return loss
优化器Optimizer
Pytorch里面用法
from torch.optim import Adamoptimizer = Adam(LitMNIST().parameters(), lr=1e-3)
Lightning里面重新定义configure_optimizers()方法
class LitMNIST(LightningModule):def configure_optimizers(self):return Adam(self.parameters(), lr=1e-3)
如果有学习率的变化
from torch.optim.lr_scheduler import CosineAnnealingLRclass LitMNIST(LightningModule):def configure_optimizers(self):opt = Adam(self.parameters(), lr=1e-3)scheduler = CosineAnnealingLR(opt, T_max=10)return [opt], [scheduler]
数据
Pytorch里加载数据
主要是使用Datasets和DataLoader
from torch.utils.data import DataLoader, random_splitfrom torchvision.datasets import MNISTimport osfrom torchvision import datasets, transformsfrom pytorch_lightning import Trainer# transforms# prepare transforms standard to MNISTtransform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])# datamnist_train = MNIST(os.getcwd(), train=True, download=True, transform=transform)mnist_train = DataLoader(mnist_train, batch_size=64)
