线性回归模型
1, 准备数据
import numpy as npimport pandas as pdfrom matplotlib import pyplot as pltimport tensorflow as tf# 样本数量n = 400# 生成测试用的数据集X = tf.random.uniform([n,2], minval=-10, maxval=10)w0 = tf.constant([[2.0],[-3.0]])b0 = tf.constant([[3.0]])Y = X@w0 + b0 + tf.random.normal([n,1], mean=0.0, stddev=2.0) # @表示矩阵乘法
# 数据可视化%matplotlib inline%config InlineBackend.figure_format = 'svg'plt.figure(figsize = (12,5))ax1 = plt.subplot(121)ax1.scatter(X[:,0],Y[:,0], c = "b")plt.xlabel("x1")plt.ylabel("y",rotation = 0)ax2 = plt.subplot(122)ax2.scatter(X[:,1],Y[:,0], c = "g")plt.xlabel("x2")plt.ylabel("y",rotation = 0)plt.show()
# 构建数据管道迭代器def data_iter(features, labels, batch_size=8):num_examples = len(features)indices = list(range(num_examples))np.random.shuffle(indices)for i in range(0, num_examples, batch_size):indexs = indices[i: min(i+batch_size, num_examples)]yield tf.gather(features, indexs), tf.gather(labels, indexs)# 测试数据管道效果batch_size = 8(feature, labels) = next(data_iter(X,Y,batch_size))print(features)print(labels)
2, 定义模型
w = tf.Variable(tf.random.normal(w0.shape))b = tf.Variable(tf.zero_like(b0, dtype=tf.float32))# 定义模型class LinearRegression:# 正向传播def __call__(self,x):return x@w + b# 损失函数def loss_func(self, y_true, y_pred):return tf.reduce_mean((y_ture - y_pred)**2/2)model = LinearRegression()
3, 训练模型
# 使用动态图调试def train_step(model, features, labels):with tf.GradientTape() as tape:predictions = model(features)loss = model.loss_func(labels, predictions)# 方向传播求梯度w.assign(w - 0.001*dloss_dw)b.assign(b - 0.001*dloss_db)return loss
# 测试train_step效果batch_size = 10(features,labels) = next(data_iter(X,Y,batch_size))train_step(model,features,labels)
def train_model(model,epochs):for epoch in tf.range(1,epochs+1):for features, labels in data_iter(X,Y,10):loss = train_step(model,features,labels)if epoch%50==0:printbar()tf.print("epoch =",epoch,"loss = ",loss)tf.print("w =",w)tf.print("b =",b)train_model(model,epochs = 200)
使用autograph机制转换成静态图加速
@tf.functiondef train_step(model, features, labels):with tf.GradientTape() as tape:predictions = model(features)loss = model.loss_func(labels, predictions)# 反向传播求梯度dloss_dw, dloss_db = tape.gradient(loss, [w,b])# 梯度下降法更新参数w.assign(w - 0.001*dloss_dw)b.assign(b - 0.001*dloss_db)return lossdef train_model(model, epochs):for epoch in tf.range(1,epochs+1):for features, labels in data_iter(X,Y,10):loss = train_step(model, features, labels)if epoch%50==0:printbar()tf.print("epoch =",epoch,"loss = ",loss)tf.print("w =",w)tf.print("b =",b)train_model(model,epochs = 200)
DNN二分类模型
1, 准备数据
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#正负样本数量
n_positive,n_negative = 2000,2000
#生成正样本, 小圆环分布
r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi)
Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
Yp = tf.ones_like(r_p)
#生成负样本, 大圆环分布
r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi)
Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
Yn = tf.zeros_like(r_n)
#汇总样本
X = tf.concat([Xp,Xn],axis = 0)
Y = tf.concat([Yp,Yn],axis = 0)
#可视化
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"]);
构建数据管道迭代器
def data_iter(features, labels, batch_size=8):
num_examples = len(features)
indices = list(range(num_exampels))
np.random.shuffle(indices)
for i in range(0, num_examples, batch_size):
indexs = indices[i: min(i + batch_size, num_examples)]
yield tf.gather(features, indexs), tf.gather(labels,indexs)
2, 定义模型
此处范例我们利用tf.Module来组织模型变量
class DNNModel(tf.Module):
def __init__(self,name = None):
super(DNNModel, self).__init__(name=name)
self.w1 = tf.Variable(tf.random.truncated_normal([2,4]),dtype = tf.float32)
self.b1 = tf.Variable(tf.zeros([1,4]),dtype = tf.float32)
self.w2 = tf.Variable(tf.random.truncated_normal([4,8]),dtype = tf.float32)
self.b2 = tf.Variable(tf.zeros([1,8]),dtype = tf.float32)
self.w3 = tf.Variable(tf.random.truncated_normal([8,1]),dtype = tf.float32)
self.b3 = tf.Variable(tf.zeros([1,1]),dtype = tf.float32)
# 正向传播
@tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])
def __call__(self,x):
x = tf.nn.relu(x@self.w1 + self.b1)
x = tf.nn.relu(x@self.w2 + self.b2)
y = tf.nn.sigmoid(x@self.w3 + self.b3)
return y
# 损失函数(二元交叉熵)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def loss_func(self,y_true,y_pred):
#将预测值限制在 1e-7 以上, 1 - 1e-7 以下,避免log(0)错误
eps = 1e-7
y_pred = tf.clip_by_value(y_pred,eps,1.0-eps)
bce = - y_true*tf.math.log(y_pred) - (1-y_true)*tf.math.log(1-y_pred)
return tf.reduce_mean(bce)
# 评估指标(准确率)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def metric_func(self,y_true,y_pred):
y_pred = tf.where(y_pred>0.5,tf.ones_like(y_pred,dtype = tf.float32),
tf.zeros_like(y_pred,dtype = tf.float32))
acc = tf.reduce_mean(1-tf.abs(y_true-y_pred))
return acc
model = DNNModel()
