通过扩展keras.callbacks.Callback基类来创建一个自定义的回调函数
训练使保留一个列表的批量损失值
class LossHistory(keras.callbacks.Callback):def on_train_begin(self, logs={}):self.losses = []def on_batch_end(self, batch, logs={}):self.losses.append(logs.get('loss'))model = Sequential()model.add(Dense(10, input_dim=784, kernel_initializer='uniform'))model.add(Activation('softmax'))model.compile(loss='categorical_crossentropy', optimizer='rmsprop')history = LossHistory()model.fit(x_train, y_train, batch_size=128, epochs=20, verbose=0, callbacks=[history])print(history.losses)
