1 实现把任意图片放进训练好的网络进行测试
输入的图片是白底黑字的数字图片进行测试,测试前需要做两步
(1)转换图片矩阵大小为28*28符合网络的输入
(2)把图片的转换成白字黑底的黑白图片
mnist_app.py
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward
def restore_model(testPicArr):
# 利用tf.Graph()复现之前定义的计算图
with tf.Graph().as_default() as tg:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
# 调用mnist_forward文件中的前向传播过程forword()函数
y = mnist_forward.forward(x, None)
# 得到概率最大的预测值
preValue = tf.argmax(y, 1)
# 实例化具有滑动平均的saver对象
variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# 通过ckpt获取最新保存的模型
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
preValue = sess.run(preValue, feed_dict={x: testPicArr})
return preValue
else:
print("No checkpoint file found")
return -1
# 预处理,包括resize,转变灰度图,二值化
def pre_pic(picName):
img = Image.open(picName)
reIm = img.resize((28, 28), Image.ANTIALIAS)
#把图片转换为灰度值图片
im_arr = np.array(reIm.convert('L'))
# 对图片做二值化处理(这样以滤掉噪声,另外调试中可适当调节阈值)
threshold = 50
# 模型的要求是黑底白字,但输入的图是白底黑字,所以需要对每个像素点的值改为255减去原值以得到互补的反色。
for i in range(28):
for j in range(28):
im_arr[i][j] = 255 - im_arr[i][j]
if (im_arr[i][j] < threshold):
im_arr[i][j] = 0
else:
im_arr[i][j] = 255
# 把图片形状拉成1行784列,并把值变为浮点型(因为要求像素点是0-1 之间的浮点数)
nm_arr = im_arr.reshape([1, 784])
nm_arr = nm_arr.astype(np.float32)
# 接着让现有的RGB图从0-255之间的数变为0-1之间的浮点数
img_ready = np.multiply(nm_arr, 1.0 / 255.0)
return img_ready
def application():
# 输入要识别的几张图片
testNum = int(input("input the number of test pictures:"))
for i in range(testNum):
# 给出待识别图片的路径和名称
testPic = input("the path of test picture:")
# 图片预处理
testPicArr = pre_pic(testPic)
# 获取预测结果
preValue = restore_model(testPicArr)
print("The prediction number is:", preValue)
def main():
application()
if __name__ == '__main__':
main()
2 实现制作数据
2.1 简介
- 数据集可以生成二进制的tfrecords文件。先将图片和标签制作成该格式的文件,使用tfrecords进行数据读取,会提高内存利用率。
- 用tf.train.Example的协议存储训练情况,训练数据的特征用键值对的形式表示。
- 用SerializeToString()把数据序列化为字符串存储。
2.2 生成tfrecords文件
writer = tf.python_io.TFRecordWriter(tfRecordName)
# 把每张图片和标签封装到example中
example = tf.train.Example(features=tf.train.Features(feature={
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),# img_raw放入原始图片
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))# labels是图片的标签
}))
# 把example进行序列化
writer.write(example.SerializeToString())
# 关闭writer
writer.close()
2.3 解析tfrecords文件
```python该函数会生成一个先入先出的队列,文件阅读器会使用它来读取数据
filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)新建一个reader
reader = tf.TFRecordReader()把读出的每个样本保存在serialized_example中进行解序列化,标签和图片的键名应该和制作tfrecords的键名相同,其中标签给出几分类。
_, serialized_example = reader.read(filename_queue)将tf.train.Example协议内存块(protocol buffer)解析为张量
features = tf.parse_single_example(serialized_example,features={
'label': tf.FixedLenFeature([10], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string)
})
将img_raw字符串转换为8位无符号整型
img = tf.decode_raw(features[‘img_raw’], tf.uint8)将形状变为一行784列
img.set_shape([784]) img = tf.cast(img, tf.float32) * (1. / 255)变成0到1之间的浮点数
label = tf.cast(features[‘label’], tf.float32)
<a name="Qh9Mi"></a>
## 2.4 生成自定义数据的完整代码
读取的文件格式是。图片文件名+空格+标签<br />![截屏2020-12-21 下午5.50.16.png](https://cdn.nlark.com/yuque/0/2020/png/1780216/1608544221091-34b15a24-0d52-4f21-874b-2314747e0aa6.png#align=left&display=inline&height=221&margin=%5Bobject%20Object%5D&name=%E6%88%AA%E5%B1%8F2020-12-21%20%E4%B8%8B%E5%8D%885.50.16.png&originHeight=221&originWidth=237&size=51618&status=done&style=none&width=237)
<a name="hXJ73"></a>
### mnist_generateds.py文件
```python
#mnist_generateds.py
# coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import os
image_train_path = './mnist_data_jpg/mnist_train_jpg_60000/'
label_train_path = './mnist_data_jpg/mnist_train_jpg_60000.txt'
tfRecord_train = './data/mnist_train.tfrecords'
image_test_path = './mnist_data_jpg/mnist_test_jpg_10000/'
label_test_path = './mnist_data_jpg/mnist_test_jpg_10000.txt'
tfRecord_test = './data/mnist_test.tfrecords'
data_path = './data'
resize_height = 28
resize_width = 28
# 生成tfrecords文件
def write_tfRecord(tfRecordName, image_path, label_path):
# 新建一个writer
writer = tf.python_io.TFRecordWriter(tfRecordName)
num_pic = 0
f = open(label_path, 'r')
contents = f.readlines()
f.close()
# 循环遍历每张图和标签
for content in contents:
value = content.split()
img_path = image_path + value[0]
img = Image.open(img_path)
img_raw = img.tobytes()#图片转换为二进制数据
labels = [0] * 10
labels[int(value[1])] = 1
# 把每张图片和标签封装到example中
example = tf.train.Example(features=tf.train.Features(feature={
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
}))
# 把example进行序列化
writer.write(example.SerializeToString())
num_pic += 1#每完成一张图片,计数器加1
print("the number of picture:", num_pic)
# 关闭writer
writer.close()
print("write tfrecord successful")
def generate_tfRecord():
isExists = os.path.exists(data_path)
if not isExists:
os.makedirs(data_path)
print('The directory was created successfully')
else:
print('directory already exists')
write_tfRecord(tfRecord_train, image_train_path, label_train_path)
write_tfRecord(tfRecord_test, image_test_path, label_test_path)
# 解析tfrecords文件
def read_tfRecord(tfRecord_path):
# 该函数会生成一个先入先出的队列,文件阅读器会使用它来读取数据
filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
# 新建一个reader
reader = tf.TFRecordReader()
# 把读出的每个样本保存在serialized_example中进行解序列化,标签和图片的键名应该和制作tfrecords的键名相同,其中标签给出几分类。
_, serialized_example = reader.read(filename_queue)
# 将tf.train.Example协议内存块(protocol buffer)解析为张量
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([10], tf.int64),# 10表示标签的分类数量
'img_raw': tf.FixedLenFeature([], tf.string)
})
# 将img_raw字符串转换为8位无符号整型
img = tf.decode_raw(features['img_raw'], tf.uint8)
# 将形状变为一行784列
img.set_shape([784])
img = tf.cast(img, tf.float32) * (1. / 255)
# 变成0到1之间的浮点数
label = tf.cast(features['label'], tf.float32)
# 返回图片和标签
return img, label
def get_tfrecord(num, isTrain=True):
if isTrain:
tfRecord_path = tfRecord_train
else:
tfRecord_path = tfRecord_test
img, label = read_tfRecord(tfRecord_path)
# 随机读取一个batch的数据,打乱数据
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size=num,
num_threads=2,# 线程
capacity=1000,
min_after_dequeue=700)
# 返回的图片和标签为随机抽取的batch_size组
return img_batch, label_batch
def main():
generate_tfRecord()
if __name__ == '__main__':
main()
在反向传播mnistbackward.py和测试程序mnist_test.py中修改图片标签的接口。使用线程协调器,方法如下
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess,coord = coord)
# 图片和标签的批获取
coord.request_stop()
coord.join(threads)
mnist_backward.py文件
线程协调器的代码是用################################################括起来的
#mnist_backward.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
import mnist_generateds # 1
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
# 手动给出训练的总样本数6万
train_num_examples = 60000 # 给出数据集的数量
def backward():
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
train_num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
# 一次批获取 batch_size张图片和标签
################################################
img_batch, label_batch = mnist_generateds.get_tfrecord(BATCH_SIZE, isTrain=True) # 3
################################################
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
################################################
# 利用多线程提高图片和标签的批获取效率
coord = tf.train.Coordinator() # 4
# 启动输入队列的线程
threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 5
################################################
for i in range(STEPS):
################################################
# 执行图片和标签的批获取
xs, ys = sess.run([img_batch, label_batch]) # 6
################################################
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
################################################
# 关闭线程协调器
coord.request_stop() # 7
coord.join(threads) # 8
################################################
def main():
backward() # 9
if __name__ == '__main__':
main()
mnist_test.py文件
线程协调器的代码是用################################################括起来的
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
import mnist_generateds
TEST_INTERVAL_SECS = 5
# 手动给出测试的总样本数1万
TEST_NUM = 10000 # 1
def test():
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, None)
ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
################################################
# 用函数get_tfrecord替换读取所有测试集1万张图片
img_batch, label_batch = mnist_generateds.get_tfrecord(TEST_NUM, isTrain=False) # 2
################################################
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
################################################
# 利用多线程提高图片和标签的批获取效率
coord = tf.train.Coordinator() # 3
# 启动输入队列的线程
threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 4
# 执行图片和标签的批获取
xs, ys = sess.run([img_batch, label_batch]) # 5
################################################
accuracy_score = sess.run(accuracy, feed_dict={x: xs, y_: ys})
print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
################################################
# 关闭线程协调器
coord.request_stop() # 6
coord.join(threads) # 7
################################################
else:
print('No checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS)
def main():
test() # 8
if __name__ == '__main__':
main()