1 简介
VGGNet是2015年在ICLR会议中,公开的神经网络模型,这个模型在2014年imagenet比赛中获得了定位的第一名和分类的第二名的好成绩。
2 基本方法
Google官方文档介绍
(1)tf.placeholder用于传入真实训练样本/测试、真实特征、待处理特征,仅占位,不必给初值,用sess.run的feed_dict参数以字典形式喂给x:
images = tf.placeholder(tf.float32, shape =[BATCH_SIZE, IMAGE_PIXELS])
(2)np.load /np.save将数组以二进制格式读出或写入磁盘,扩展名为.npy
np.save(“名.npy”,某数组) 某变量 = np.load(“名.npy”,encoding =””).item()# encoding可不写,有三个选项latin1 ASCII bytes 默认是ASCII
(3).item()遍历(键值对)
data_dict = np.load(vgg16.npy,encoding=’latin1’).item()#读取vgg16.npy文件,遍历其内键值对,导出模型参数赋给data_dict
(4)tf.shape(a)返回a的维度,a可以为tensor,list ,array
(5)tf.nn.bias_add(乘加和,bias)#把bias加到乘加和上
(6)tf.reshape(tensor,[n行,m列])或tf.reshape(tensor,[-1,m列])-1表示行随着m列自动计算
(7)np.argsort(列表)#对列表从小到大排序,返回索引值
(8)os.getcwd() # 返回当前工作目录
(9)os.path.join( , ,…) # 拼出整个路径,可引导到特定文件
vv16_path = os.path.join(os.getcwd(),”vgg16.npy”)
(10)tf.split(切谁,怎么切,在哪个维度切)
#value 是一个【5 30】的张量
split0,split1,split2 = tf.split(value,[4,15,11],1)
把value在第一个维度分为4 15 11三份
tf.shape(split0) ==>[5,4]
tf.shape(split1) ==>[5,15]
tf.shape(split2) ==>[5,11]
#把value平均切为三份
split0,split1,split2 = tf.split(value, num_or_size_splits = 3,axis = 1)
(11)tf.conda(值,在哪个维),实现粘贴
t1 = [[1,2,3],[4,5,6]]
t2 = [[7,8,9],[10,11,12]]
#按照第0个维度粘
tf.concat([t1,t2],0) ==>[[1,2,3],[4,5,6][7,8,9],[10,11,12]]
#按照第1个维度粘贴
tf.concat([t1,t2],1) ==>[[1,2,3,7,8,9],[4,5,6,10,11,12]]
...
(12)fig = plt.figure(‘图名字’)可视化图片
img = io.imread(图片路径)
ax = fig.add_subplot(数 数 数)#分别是包含几行,包含∏列,当前是第几个
ax.bar(bar的个数,bar的值,每个bar的名字,bar宽,bard色)
ax.set_ylabel("")
ax.set_title("")
ax.text(文字x坐标,文字y坐标,文字内容,ha ='center',va ='bottom',fontsize = 7)
(13)ax = imshow(图)画子图
3 实现
app.py文件
是应用程序,实现图像识别
#coding:utf-8
import numpy as np
import tensorflow as tf
#引入绘图模块
import matplotlib.pyplot as plt
#引用自定义模块
import vgg16
import utils
from Nclasses import labels
testNum = input("input the number of test pictures:")
for i in range(testNum):
img_path = raw_input('Input the path and image name:')
#对待测试图像出预处理操作
img_ready = utils.load_image(img_path)
#定义画图窗口,并指定窗口名称
fig=plt.figure(u"Top-5 预测结果")
with tf.Session() as sess:
#定义一个维度为[1, 224, 224, 3]的占位符
images = tf.placeholder(tf.float32, [1, 224, 224, 3])
#实例化出vgg
vgg = vgg16.Vgg16()
#前向传播过程,调用成员函数,并传入待测试图像
vgg.forward(images)
#将一个batch数据喂入网络,得到网络的预测输出
probability = sess.run(vgg.prob, feed_dict={images:img_ready})
#得到预测概率最大的五个索引值
top5 = np.argsort(probability[0])[-1:-6:-1]
print "top5:",top5
#定义两个list-对应概率值和实际标签
values = []
bar_label = []
#枚举上面取出的五个索引值
for n, i in enumerate(top5):
print "n:",n
print "i:",i
#将索引值对应的预测概率值取出并放入value
values.append(probability[0][i])
#将索引值对应的际标签取出并放入bar_label
bar_label.append(labels[i])
print i, ":", labels[i], "----", utils.percent(probability[0][i])
#将画布分为一行一列,并把下图放入其中
ax = fig.add_subplot(111)
#绘制柱状图
ax.bar(range(len(values)), values, tick_label=bar_label, width=0.5, fc='g')
#设置横轴标签
ax.set_ylabel(u'probabilityit')
#添加标题
ax.set_title(u'Top-5')
for a,b in zip(range(len(values)), values):
#显示预测概率值
ax.text(a, b+0.0005, utils.percent(b), ha='center', va = 'bottom', fontsize=7)
#显示图像
plt.show()
vgg16.py文件
读取模型参数,搭建模型
#tensorflow学习笔记(北京大学) vgg16.py 完全解析
#QQ群:476842922(欢迎加群讨论学习
#!/usr/bin/python
#coding:utf-8
import inspect
import os
import numpy as np
import tensorflow as tf
import time
import matplotlib.pyplot as plt
#样本RGB的平均值
VGG_MEAN = [103.939, 116.779, 123.68]
class Vgg16():
def __init__(self, vgg16_path=None):
if vgg16_path is None:
#返回当前工作目录
vgg16_path = os.path.join(os.getcwd(), "vgg16.npy")
#遍历其内键值对,导入模型参数
self.data_dict = np.load(vgg16_path, encoding='latin1').item()
def forward(self, images):
print("build model started")
#获取前向传播开始时间
start_time = time.time()
#逐个像素乘以255
rgb_scaled = images * 255.0
#从GRB转换彩色通道到BRG
red, green, blue = tf.split(rgb_scaled,3,3)
#减去每个通道的像素平均值,这种操作可以移除图像的平均亮度值
#该方法常用在灰度图像上
bgr = tf.concat([
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2]],3)
#构建VGG的16层网络(包含5段卷积,3层全连接),并逐层根据命名空间读取网络参数
#第一段卷积,含有两个卷积层,后面接最大池化层,用来缩小图片尺寸
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
#传入命名空间的name,来获取该层的卷积核和偏置,并做卷积运算,最后返回经过激活函数后的值
self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
#根据传入的pooling名字对该层做相应的池化操作
self.pool1 = self.max_pool_2x2(self.conv1_2, "pool1")
#第二段卷积,包含两个卷积层,一个最大池化层
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
self.pool2 = self.max_pool_2x2(self.conv2_2, "pool2")
#第三段卷积,包含三个卷积层,一个最大池化层
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
self.pool3 = self.max_pool_2x2(self.conv3_3, "pool3")
#第四段卷积,包含三个卷积层,一个最大池化层
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
self.pool4 = self.max_pool_2x2(self.conv4_3, "pool4")
#第五段卷积,包含三个卷积层,一个最大池化层
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
self.pool5 = self.max_pool_2x2(self.conv5_3, "pool5")
#第六层全连接
#根据命名空间name做加权求和运算
self.fc6 = self.fc_layer(self.pool5, "fc6")
#经过relu激活函数
self.relu6 = tf.nn.relu(self.fc6)
#第七层全连接
self.fc7 = self.fc_layer(self.relu6, "fc7")
self.relu7 = tf.nn.relu(self.fc7)
#第八层全连接
self.fc8 = self.fc_layer(self.relu7, "fc8")
self.prob = tf.nn.softmax(self.fc8, name="prob")
#得到全向传播时间
end_time = time.time()
print(("time consuming: %f" % (end_time-start_time)))
#清空本次读取到的模型参数字典
self.data_dict = None
#定义卷积运算
def conv_layer(self, x, name):
#根据命名空间name找到对应卷积层的网络参数
with tf.variable_scope(name):
#读到该层的卷积核
w = self.get_conv_filter(name)
#卷积运算
conv = tf.nn.conv2d(x, w, [1, 1, 1, 1], padding='SAME')
#读到偏置项
conv_biases = self.get_bias(name)
#加上偏置,并做激活计算
result = tf.nn.relu(tf.nn.bias_add(conv, conv_biases))
return result
#定义获取卷积核的参数
def get_conv_filter(self, name):
#根据命名空间从参数字典中获取对应的卷积核
return tf.constant(self.data_dict[name][0], name="filter")
#定义获取偏置项的参数
def get_bias(self, name):
#根据命名空间从参数字典中获取对应的偏置项
return tf.constant(self.data_dict[name][1], name="biases")
#定义最大池化操作
def max_pool_2x2(self, x, name):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
#定义全连接层的全向传播操作
def fc_layer(self, x, name):
#根据命名空间name做全连接层的计算
with tf.variable_scope(name):
#获取该层的维度信息列表
shape = x.get_shape().as_list()
dim = 1
for i in shape[1:]:
#将每层的维度相乘
dim *= i
#改变特征图的形状,也就是将得到的多维特征做拉伸操作,只在进入第六层全连接层做该操作
x = tf.reshape(x, [-1, dim])
#读到权重值
w = self.get_fc_weight(name)
#读到偏置项值
b = self.get_bias(name)
#对该层输入做加权求和,再加上偏置
result = tf.nn.bias_add(tf.matmul(x, w), b)
return result
#定义获取权重的函数
def get_fc_weight(self, name):
#根据命名空间name从参数字典中获取对应1的权重
return tf.constant(self.data_dict[name][0], name="weights")
utils.py文件
读入图片,概率显示
#!/usr/bin/python
#coding:utf-8
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from pylab import mpl
mpl.rcParams['font.sans-serif']=['SimHei'] # 正常显示中文标签
mpl.rcParams['axes.unicode_minus']=False # 正常显示正负号
def load_image(path):
fig = plt.figure("Centre and Resize")
#传入读入图片的参数路径
img = io.imread(path)
#将像素归一化处理到[0,1]
img = img / 255.0
#将该画布分为一行三列,把下面的图像放在画布的第一个位置
ax0 = fig.add_subplot(131)
#添加子标签
ax0.set_xlabel(u'Original Picture')
#添加展示该图像
ax0.imshow(img)
#找到该图像的最短边
short_edge = min(img.shape[:2])
#把图像的w和h分别减去最短边,并求平均
y = (img.shape[0] - short_edge) / 2
x = (img.shape[1] - short_edge) / 2
#取出切分过的中心图像
crop_img = img[y:y+short_edge, x:x+short_edge]
#把下面的图像放在画布的第二个位置
ax1 = fig.add_subplot(132)
#添加子标签
ax1.set_xlabel(u"Centre Picture")
#添加展示该图像
ax1.imshow(crop_img)
#resize成固定的imagesize
re_img = transform.resize(crop_img, (224, 224))
#把下面的图像放在画布的第三个位置
ax2 = fig.add_subplot(133)
ax2.set_xlabel(u"Resize Picture")
ax2.imshow(re_img)
#转换为需要的输入形状
img_ready = re_img.reshape((1, 224, 224, 3))
return img_ready
#定义百分比转换函数
def percent(value):
return '%.2f%%' % (value * 100)
Nclasses.py文件
含label字典
源码下载
vgg16.npy文件
包含了神经网络的全部参数
源码下载