Xgboost

  1. muti_xgb = XGBClassifier(n_estimators=2000, max_depth=5, learning_rate=0.025,
  2. eval_metric='mlogloss', reg_lambda=1, random_state=10, n_jobs=8,objective='multi:softprob',num_class=18)
  3. muti_xgb = OneVsRestClassifier(XGBClassifier())
  4. muti_xgb.fit(X_train,y_train)
  5. y_predict = muti_xgb.predict(X_test)
  6. print(accuracy_score(y_test, y_predict))

准确率:0.7932

Lightgbm

  1. muti_lgb = OneVsRestClassifier(LGBMClassifier())
  2. muti_lgb.fit(X_train,y_train)
  3. y_predict = muti_lgb.predict(X_test)
  4. print(accuracy_score(y_test, y_predict))

准确率:0.6152

Decisionclassifier

  1. clf = DecisionTreeClassifier(random_state=0)
  2. clf.fit(X_train, y_train)
  3. y_predict = clf.predict(X_test)
  4. print(accuracy_score(y_test, y_predict))

准确率:0.5264