import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve
SEED = 222
np.random.seed(SEED)
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.svm import SVC,LinearSVC
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
df = pd.read_csv('input.csv')
def get_train_test(): # 数据处理
y = 1 * (df.cand_pty_affiliation == "REP")
x = df.drop(['cand_pty_affiliation'],axis=1)
x = pd.get_dummies(x,sparse=True)
x.drop(x.columns[x.std()==0],axis=1,inplace=True)
return train_test_split(x,y,test_size=0.95,random_state=SEED)
def get_models(): # 模型定义
nb = GaussianNB()
svc = SVC(C=100,probability=True)
knn = KNeighborsClassifier(n_neighbors=3)
lr = LogisticRegression(C=100,random_state=SEED)
nn = MLPClassifier((80, 10), early_stopping=False, random_state=SEED)
gb = GradientBoostingClassifier(n_estimators =100, random_state = SEED)
rf = RandomForestClassifier(n_estimators=1,max_depth=3,random_state=SEED)
models = {'svm':svc,
'knn':knn,
'naive bayes':nb,
'mlp-nn':nn,
'random forest':rf,
'gbm':gb,
'logistic':lr,
}
return models
def train_base_learnres(base_learners,inp,out,verbose=True): # 训练基本模型
if verbose:print("fitting models.")
for i,(name,m) in enumerate(base_learners.items()):
if verbose:print("%s..." % name,end=" ",flush=False)
m.fit(inp,out)
if verbose:print("done")
def predict_base_learners(pred_base_learners,inp,verbose=True): # 把基本学习器的输出作为融合学习的特征,这里计算特征
p = np.zeros((inp.shape[0],len(pred_base_learners)))
if verbose:print("Generating base learner predictions.")
for i,(name,m) in enumerate(pred_base_learners.items()):
if verbose:print("%s..." % name,end=" ",flush=False)
p_ = m.predict_proba(inp)
p[:,i] = p_[:,1]
if verbose:print("done")
return p
def ensemble_predict(base_learners,meta_learner,inp,verbose=True): # 融合学习进行预测
p_pred = predict_base_learners(base_learners,inp,verbose=verbose) # 测试数据必须先经过基本学习器计算特征
return p_pred,meta_learner.predict_proba(p_pred)[:,1]
def ensenmble_by_blend(): # blend融合
xtrain_base, xpred_base, ytrain_base, ypred_base = train_test_split(
xtrain, ytrain, test_size=0.5, random_state=SEED
) # 把数据切分成两部分
train_base_learnres(base_learners, xtrain_base, ytrain_base) # 训练基本模型
p_base = predict_base_learners(base_learners, xpred_base) # 把基本学习器的输出作为融合学习的特征,这里计算特征
meta_learner.fit(p_base, ypred_base) # 融合学习器的训练
p_pred, p = ensemble_predict(base_learners, meta_learner, xtest) # 融合学习进行预测
print("\nEnsemble ROC-AUC score: %.3f" % roc_auc_score(ytest, p))
from sklearn.base import clone
def stacking(base_learners,meta_learner,X,y,generator): # stacking进行融合
print("Fitting final base learners...",end="")
train_base_learnres(base_learners,X,y,verbose=False)
print("done")
print("Generating cross-validated predictions...")
cv_preds,cv_y = [],[]
for i,(train_inx,test_idx) in enumerate(generator.split(X)):
fold_xtrain,fold_ytrain = X[train_inx,:],y[train_inx]
fold_xtest,fold_ytest = X[test_idx,:],y[test_idx]
fold_base_learners = {name:clone(model)
for name,model in base_learners.items()}
train_base_learnres(fold_base_learners,fold_xtrain,fold_ytrain,verbose=False)
fold_P_base = predict_base_learners(fold_base_learners,fold_xtest,verbose=False)
cv_preds.append(fold_P_base)
cv_y.append(fold_ytest)
print("Fold %i done" %(i+1))
print("CV-predictions done")
cv_preds = np.vstack(cv_preds)
cv_y = np.hstack(cv_y)
print("Fitting meta learner...",end="")
meta_learner.fit(cv_preds,cv_y)
print("done")
return base_learners,meta_learner
def ensemble_by_stack():
from sklearn.model_selection import KFold
cv_base_learners,cv_meta_learner = stacking(
get_models(),clone(meta_learner),xtrain.values,ytrain.values,KFold(2))
P_pred,p = ensemble_predict(cv_base_learners,cv_meta_learner,xtest,verbose=False)
print("\nEnsemble ROC-AUC score: %.3f" %roc_auc_score(ytest,p))
def plot_roc_curve(ytest,p_base_learners,p_ensemble,labels,ens_label):
plt.figure(figsize=(10,8))
plt.plot([0,1],[0,1],'k--')
cm = [plt.cm.rainbow(i)
for i in np.linspace(0,1.0, p_base_learners.shape[1] +1)]
for i in range(p_base_learners.shape[1]):
p = p_base_learners[:,i]
fpr,tpr,_ = roc_curve(ytest,p)
plt.plot(fpr,tpr,label = labels[i],c=cm[i+1])
fpr, tpr, _ = roc_curve(ytest, p_ensemble)
plt.plot(fpr, tpr, label=ens_label, c=cm[0])
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(frameon=False)
plt.show()
from mlens.ensemble import SuperLearner
def use_pack():
sl =SuperLearner(
folds=10,random_state=SEED,verbose=2,
# backend="multiprocessing"
)
# Add the base learners and the meta learner
sl.add(list(base_learners.values()),proba=True)
sl.add_meta(meta_learner,proba=True)
# Train the ensemble
sl.fit(xtrain,ytrain)
# Predict the test set
p_sl=sl.predict_proba(xtest)
print("\nSuper Learner ROC-AUC score: %.3f" % roc_auc_score(ytest,p_sl[:,1]))
if __name__ == "__main__":
xtrain, xtest, ytrain, ytest = get_train_test()
base_learners = get_models()
meta_learner = GradientBoostingClassifier(
n_estimators=1000,
loss="exponential",
max_depth=4,
subsample=0.5,
learning_rate=0.005,
random_state=SEED
)
# ensenmble_by_blend() # blend进行融合
# ensemble_by_stack() # stack进行融合
use_pack() # 调用包进行融合
2 参考资料
【Stacking、Blend的baseline】https://www.cnblogs.com/demo-deng/p/10557267.html
【集成学习 好的博客+代码】https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-ensemble-models/