Definition

Is a table or an equation that links each outcome of a statistical experiment with the probability of occurence. When Continuous, is is described by the Probability Density Function

Types (Density Function)

Normal (Gaussian)

常态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个非常常见的连续机率分布。常态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量。

若随机变量 Distributions - 图1 服从一个位置参数为 Distributions - 图2 、尺度参数为 Distributions - 图3 的常态分布,记为:

Distributions - 图4
则其概率密度函数为:

Distributions - 图5

常态分布的数学期望值或期望值 Distributions - 图6 等于位置参数,决定了分布的位置;其方差 Distributions - 图7 的开平方或标准差 Distributions - 图8 等于尺度参数,决定了分布的幅度。

[1] https://zh.wikipedia.org/wiki/正态分布

Bernoulli distribution

伯努利分布(Bernoulli distribution,又名两点分布或者0-1分布,是一个离散型概率分布,为纪念瑞士科学家雅各布·伯努利而命名。)若伯努利试验成功,则伯努利随机变量取值为1。若伯努利试验失败,则伯努利随机变量取值为0。记其成功概率为 Distributions - 图9,失败概率为 Distributions - 图10。 则

其概率密度函数为:

Distributions - 图11

期望与方差分别为 Distributions - 图12Distributions - 图13

[1] https://zh.wikipedia.org/wiki/伯努利分布

Gamma Distribution

伽玛分布是统计学的一种连续机率函数。伽玛分布中的参数 Distributions - 图14,称为形状参数,Distributions - 图15 称为尺度参数。

假设随机变数 Distributions - 图16 为等到第 Distributions - 图17 件事发生所需之等候时间。

概率密度函數

  1. ![](https://cdn.nlark.com/yuque/__latex/e6686e65110b31764e0cb586d26ab75f.svg#card=math&code=%5Cdisplaystyle%20X%5Csim%20%5CGamma%20%28%5Calpha%20%2C%5Cbeta%20%29&height=16&width=70),且令
  2. ![](https://cdn.nlark.com/yuque/__latex/426dcb8ba56e37d4d2d9ac4365b24100.svg#card=math&code=%5Cdisplaystyle%20%5Clambda%20%3D%7B%5Cfrac%20%7B1%7D%7B%5Cbeta%20%7D%7D&height=32&width=38)(即
  3. ![](https://cdn.nlark.com/yuque/__latex/14a0d60c1ada888a79228d5ffc422695.svg#card=math&code=%5Cdisplaystyle%20X%5Csim%20%5CGamma%20%28%5Calpha%20%2C%7B%5Cfrac%20%7B1%7D%7B%5Clambda%20%7D%7D%29&height=31&width=76)),则:

Distributions - 图18

  1. <br />其中[Gamma函数](https://zh.wikipedia.org/wiki/%CE%93%E5%87%BD%E6%95%B0)有以下性质:

Distributions - 图19

矩母函数、概率母函数、期望值、方差

Distributions - 图20

  1. <br />![](https://cdn.nlark.com/yuque/__latex/97848536609e224e87a6f6c606a77905.svg#card=math&code=%5Cdisplaystyle%20K_%7Bx%7D%5Cleft%28t%5Cright%29%3D%5Cln%20M_%7Bx%7D%5Cleft%28t%5Cright%29%3D%5Calpha%20%5Cleft%5B%5Cln%20%5Clambda%20-%5Cln%20%5Cleft%28%5Clambda%20-t%5Cright%29%5Cright%5D&height=16&width=230)
  1. <br />![](https://cdn.nlark.com/yuque/__latex/4ea5626e7d34d82c4ce0b716f3d5c591.svg#card=math&code=%5Cdisplaystyle%20%7B%5Cfrac%20%0A%7BdK_%7Bx%7D%5Cleft%28t%5Cright%29%7D%7Bdt%7D%7D%3D%7B%5Cfrac%20%7B%5Calpha%20%7D%7B%5Clambda%20-t%7D%7D%2C%5Cquad%20%0Awhen%28t%3D0%29%2C%5Cquad%20E%5Cleft%28X%5Cright%29%3D%7B%5Cfrac%20%7B%5Calpha%20%7D%7B%5Clambda%20%7D%7D&height=35&width=278)
  1. ![](https://cdn.nlark.com/yuque/__latex/3900e3a4e0e5dc90d0bfb84277c38725.svg#card=math&code=%5Cdisplaystyle%20%7B%5Cfrac%20%0A%7Bd%5E%7B2%7DK_%7Bx%7D%5Cleft%28t%5Cright%29%7D%7Bdt%5E%7B2%7D%7D%7D%3D%7B%5Cfrac%20%7B%5Calpha%20%7D%7B%5Cleft%28%5Clambda%20%0A-t%5Cright%29%5E%7B2%7D%7D%7D%2C%5Cquad%20when%28t%3D0%29%2C%5Csigma%20%5E%7B2%7D%5Cleft%28X%5Cright%29%3D%7B%5Cfrac%20%7B%5Calpha%0A%20%7D%7B%5Clambda%20%5E%7B2%7D%7D%7D&height=41&width=296)

Gamma的加成性

当两随机变数服从Gamma分配,互相独立,且单位时间内频率相同时,Gamma分布具有加成性。

  1. ![](https://cdn.nlark.com/yuque/__latex/1a66d6b5e488cd22329f899035f31ffa.svg#card=math&code=%7B%5Cdisplaystyle%20%5Ccoprod%20%0A%7B%5Cbegin%7Bcases%7Dr.v.X%5Csim%20%5CGamma%20%5Cleft%28%5Calpha%20_%7B1%7D%2C%7B%5Ccolor%20%7BRed%7D%5Clambda%20%0A%7D%5Cright%29%5C%5Cr.v.Y%5Csim%20%5CGamma%20%5Cleft%28%5Calpha%20_%7B2%7D%2C%7B%5Ccolor%20%7BRed%7D%5Clambda%20%0A%7D%5Cright%29%5Cend%7Bcases%7D%7D%5CLongrightarrow%20X%2BY%5Csim%20%5CGamma%20%5Cleft%28%7B%5Ccolor%20%0A%7Bred%7D%5Calpha%20_%7B1%7D%2B%5Calpha%20_%7B2%7D%7D%2C%5Clambda%20%5Cright%29%7D&height=36&width=306)

[1] https://zh.wikipedia.org/wiki/伽玛分布