🚀 原文链接:https://xgboost.readthedocs.io/en/latest/get_started.html
This is a quick start tutorial showing snippets(一小条消息) for you to quickly try out XGBoost on the demo dataset on a binary classification task.
Links to Other Helpful Resources
- See Installation Guide on how to install XGBoost.
- See Text Input Format on using text format for specifying training/testing data.
- See Tutorials for tips and tutorials.
- See Learning to use XGBoost by Examples for more code examples.
Python
import xgboost as xgb# read in datadtrain = xgb.DMatrix('demo/data/agaricus.txt.train')dtest = xgb.DMatrix('demo/data/agaricus.txt.test')# specify parameters via mapparam = {'max_depth':2, 'eta':1, 'objective':'binary:logistic'}num_round = 2bst = xgb.train(param, dtrain, num_round)# make predictionpreds = bst.predict(dtest)
R
# load datadata(agaricus.train, package='xgboost')data(agaricus.test, package='xgboost')train <- agaricus.traintest <- agaricus.test# fit modelbst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nrounds = 2,nthread = 2, objective = "binary:logistic")# predictpred <- predict(bst, test$data)
Julia
using XGBoost# read datatrain_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))# fit modelnum_round = 2bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)# predictpred = predict(bst, test_X)
Scala
```scala import ml.dmlc.xgboost4j.scala.DMatrix import ml.dmlc.xgboost4j.scala.XGBoost
object XGBoostScalaExample { def main(args: Array[String]) { // read trainining data, available at xgboost/demo/data val trainData = new DMatrix(“/path/to/agaricus.txt.train”) // define parameters val paramMap = List( “eta” -> 0.1, “max_depth” -> 2, “objective” -> “binary:logistic”).toMap // number of iterations val round = 2 // train the model val model = XGBoost.train(trainData, paramMap, round) // run prediction val predTrain = model.predict(trainData) // save model to the file. model.saveModel(“/local/path/to/model”) } } ```
