import tushare as tsimport pandas as pd#测试dataFrameshareCode = '600848'dfLoad = ts.get_k_data(shareCode,start='2018-01-05',end='2018-01-09')dfUpda1 = ts.get_k_data(shareCode,start='2018-01-05',end='2018-01-12') dfUpda2 = ts.get_k_data(shareCode,start='2018-01-15',end='2018-01-20')dfConc = pd.concat([dfLoad,dfUpda2,dfUpda1])#排序#注意排序之后原本的数据不会变,而是返回一个排序完的值....记得用一个变量去接收dfSort = dfConc.sort_values(by = 'date',ascending = False)#去重- subset表示考虑哪一列 keep = 'first' 表示留下第一个dfDrop = dfSort.drop_duplicates(subset = ['date'],keep = 'first')print(dfSort)print(dfDrop)#这里可以选择是否保存index 看情况吧dfDrop.to_csv('days/' + shareCode + '.csv',index = False)#读取这里可以选择哪一列作为键值 (index) 否则读出来的数据会自动添加然后多一列..#选择键值参数 index_coldfRead = pd.read_csv('days/' + shareCode + '.csv')#直接连接 这里不适用merge#merge 合并后会分开左右两边列名相同的值#dfRead = pd.concat([dfRead,dfSort])#显示全部列pd.set_option('display.max_column',None)print('dfRead:')print(dfRead)
https://blog.csdn.net/icnntta/article/details/81274168