理论
灰度差分评价函数具有较好的计算性能,但其缺点也很明显,即在焦点附近灵敏度不高,即该函数在极值点附近过于平坦,从而导致聚焦精度难以提高。在文章《一种快速高灵敏度聚焦评价函数》中提出了一种新的评价函数,称之为灰度方差乘积法,即对每一个像素领域两个灰度差相乘后再逐个像素累加,该函数定义如下:
代码
def SMD2(img):
'''
:param img:narray 二维灰度图像
:return: float 图像约清晰越大
'''
shape = np.shape(img)
out = 0
for x in range(0, shape[0]-1):
for y in range(0, shape[1]-1):
out+=math.fabs(int(img[x,y])-int(img[x+1,y]))*math.fabs(int(img[x,y]-int(img[x,y+1])))
return out
https://blog.csdn.net/Greepex/article/details/90183018
5. SMD2 (灰度方差乘积)函数
灰度差分评价函数具有较好的计算性能,但其缺点也很明显,即在焦点附近灵敏度不高,即该函数在极值点附近过于平坦,从而导致聚焦精度难以提高。在文章《一种快速高灵敏度聚焦评价函数》中提出了一种新的评价函数,称之为灰度方差乘积法,即对每一个像素领域两个灰度差相乘后再逐个像素累加,该函数定义如下:
代码:
def SMD2(img):
# 图像的预处理
reImg = cv2.resize(img, (800, 900), interpolation=cv2.INTER_CUBIC)
img2gray = cv2.cvtColor(reImg, cv2.COLOR_BGR2GRAY) # 将图片压缩为单通道的灰度图
f=self._imageToMatrix(img2gray)/255.0
x, y = f.shape
D = 0
for i in range(x - 1):
for j in range(y - 1):
D += np.abs(f[i+1,j]-f[i,j])*np.abs(f[i,j]-f[i,j+1])
return D
https://gist.github.com/JuneoXIE/d595028586eec752f4352444fc062c44
def _SMD2Detection(self, imgName):
"""
灰度方差乘积
:param imgName:
:return:
"""
# step 1 图像的预处理
img2gray, reImg = self.preImgOps(imgName)
f=self._imageToMatrix(img2gray)/255.0
x, y = f.shape
score = 0
for i in range(x - 1):
for j in range(y - 1):
score += np.abs(f[i+1,j]-f[i,j])*np.abs(f[i,j]-f[i,j+1])
# strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分
score=score
newImg = self._drawImgFonts(reImg, str(score))
newDir = self.strDir + "/_SMD2Detection_/"
if not os.path.exists(newDir):
os.makedirs(newDir)
newPath = newDir + imgName
cv2.imwrite(newPath, newImg) # 保存图片
cv2.imshow(imgName, newImg)
cv2.waitKey(0)
return score
https://github.com/Leezhen2014/python—/blob/master/BlurDetection.py