强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理.
这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片人脸识别,眼部识别,但相识度对比是指两个或两个以上的图片进行对比相似度.
先来几张图片
(a.png)
(a_cp.png)
(t1.png)
(t2.png)
其中,a_cp.png 是复制a.png,也就是说是同一个图片, t1.png 与t2.png 看起来相同,但都是通过PIL裁剪的图片,可以认为相似但不相同.
我们先通过下面几个方法判断图片是否相同
operator对图片对象进行对比
operator.eq(a,b) 判断a,b 对象是否相同
import operatorfrom PIL import Imagea=Image.open("a.png")a_cp=Image.open("a_cp.png")t1=Image.open("t1.png")t2=Image.open("t2.png")c=operator.eq(a,a_cp)e=operator.eq(t1,t2)print(c)print(e)
numpy.subtract对图片对象进行对比
import numpy as npfrom PIL import Imagea = Image.open("a.png")a_cp = Image.open("a_cp.png")t1 = Image.open("t1.png")t2 = Image.open("t2.png")difference = np.subtract(a, a_cp) # 判断imgv 与v 的差值,存在差值,表示不相同c = not np.any(difference) # np.any 满足一个1即为真, (图片相同差值为0,np.any为false, not fasle 即为真认为存在相同的图片)difference = np.subtract(t1, t2)e = not np.any(difference)print(c)print(e)
打印结果 c为True, e为False
hashlib.md5对图片对象进行对比
import hashliba = open("a.png","rb")a_cp = open("a_cp.png",'rb')t1 = open("t1.png",'rb')t2 = open("t2.png",'rb')cmd5=hashlib.md5(a.read()).hexdigest()ccmd5=hashlib.md5(a_cp.read()).hexdigest()emd5=hashlib.md5(t1.read()).hexdigest()eecmd5=hashlib.md5(t2.read()).hexdigest()print(cmd5)if cmd5==ccmd5:print(True)else:print(False)print(emd5)if emd5==eecmd5:print(True)else:print(False)
打印文件md5结果:
928f9df2d83fa5656bbd0f228c8f5f46Truebff71ccd5d2c85fb0730c2ada678feeaFalse
由 operator.eq 与 numpy.subtract 和 hashlib.md5 方法发现,这些方法得出的结论,要不相同,要不不相同,世界万物皆如此.
说的好! 你给我的是boolean值,我不要,不要,不……
我们想要的就是得到两个图片的相似值,某些场景,我们需要这样的值, 比如探头监控中的人与真人照片对比,因受到距离, 分辨率,移动速度等影响,相同的人有可能无法准确辨认,在比如,连连看中的小方块,通过PIL裁剪后,相同的图像图片因灰度,尺寸大小不同我们会认为相同的图片以上三个方法就返回False. 因此openCV更适合这种百分比的相似度计算.
之前用过sklearn 的 Linear Regression 做过线性回归的数据预处理计算概率,因数据量小,未做到样本训练,突发奇想,如果openCV能结合sklearn的机器学习,给一堆图片,经过fit样本训练获取图片的各种特征,随便给一张图片,然后便能知道图片来自那个地方,拍摄时间,都有哪些人物…
回来,回来… 我们继续说openCV相识度问题.
一般通过三种哈希算法与灰度直方图算法进行判断
均值哈希算法
#均值哈希算法def aHash(img):#缩放为8*8img=cv2.resize(img,(8,8))#转换为灰度图gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#s为像素和初值为0,hash_str为hash值初值为''s=0hash_str=''#遍历累加求像素和for i in range(8):for j in range(8):s=s+gray[i,j]#求平均灰度avg=s/64#灰度大于平均值为1相反为0生成图片的hash值for i in range(8):for j in range(8):if gray[i,j]>avg:hash_str=hash_str+'1'else:hash_str=hash_str+'0'return hash_str
差值哈希算法
def dHash(img):#缩放8*8img=cv2.resize(img,(9,8))#转换灰度图gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)hash_str=''#每行前一个像素大于后一个像素为1,相反为0,生成哈希for i in range(8):for j in range(8):if gray[i,j]>gray[i,j+1]:hash_str=hash_str+'1'else:hash_str=hash_str+'0'return hash_str
感知哈希算法
def pHash(img):#缩放32*32img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 将灰度图转为浮点型,再进行dct变换dct = cv2.dct(np.float32(gray))#opencv实现的掩码操作dct_roi = dct[0:8, 0:8]hash = []avreage = np.mean(dct_roi)for i in range(dct_roi.shape[0]):for j in range(dct_roi.shape[1]):if dct_roi[i, j] > avreage:hash.append(1)else:hash.append(0)return hash
灰度直方图算法
# 计算单通道的直方图的相似值def calculate(image1, image2):hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])# 计算直方图的重合度degree = 0for i in range(len(hist1)):if hist1[i] != hist2[i]:degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))else:degree = degree + 1degree = degree / len(hist1)return degree
RGB每个通道的直方图计算相似度
def classify_hist_with_split(image1, image2, size=(256, 256)):# 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值image1 = cv2.resize(image1, size)image2 = cv2.resize(image2, size)sub_image1 = cv2.split(image1)sub_image2 = cv2.split(image2)sub_data = 0for im1, im2 in zip(sub_image1, sub_image2):sub_data += calculate(im1, im2)sub_data = sub_data / 3return sub_data
啥?
我为什么知道这三个哈希算法和通道直方图计算方法,嗯, 我也是从网上查的.
上素材
(x1y2.png)
(x2y4.png)
(x2y6.png)
(t1.png)
(t2.png)
(t3.png)
完整代码:
import cv2import numpy as np# 均值哈希算法def aHash(img):# 缩放为8*8img = cv2.resize(img, (8, 8))# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# s为像素和初值为0,hash_str为hash值初值为''s = 0hash_str = ''# 遍历累加求像素和for i in range(8):for j in range(8):s = s + gray[i, j]# 求平均灰度avg = s / 64# 灰度大于平均值为1相反为0生成图片的hash值for i in range(8):for j in range(8):if gray[i, j] > avg:hash_str = hash_str + '1'else:hash_str = hash_str + '0'return hash_str# 差值感知算法def dHash(img):# 缩放8*8img = cv2.resize(img, (9, 8))# 转换灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)hash_str = ''# 每行前一个像素大于后一个像素为1,相反为0,生成哈希for i in range(8):for j in range(8):if gray[i, j] > gray[i, j + 1]:hash_str = hash_str + '1'else:hash_str = hash_str + '0'return hash_str# 感知哈希算法(pHash)def pHash(img):# 缩放32*32img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 将灰度图转为浮点型,再进行dct变换dct = cv2.dct(np.float32(gray))# opencv实现的掩码操作dct_roi = dct[0:8, 0:8]hash = []avreage = np.mean(dct_roi)for i in range(dct_roi.shape[0]):for j in range(dct_roi.shape[1]):if dct_roi[i, j] > avreage:hash.append(1)else:hash.append(0)return hash# 通过得到RGB每个通道的直方图来计算相似度def classify_hist_with_split(image1, image2, size=(256, 256)):# 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值image1 = cv2.resize(image1, size)image2 = cv2.resize(image2, size)sub_image1 = cv2.split(image1)sub_image2 = cv2.split(image2)sub_data = 0for im1, im2 in zip(sub_image1, sub_image2):sub_data += calculate(im1, im2)sub_data = sub_data / 3return sub_data# 计算单通道的直方图的相似值def calculate(image1, image2):hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])# 计算直方图的重合度degree = 0for i in range(len(hist1)):if hist1[i] != hist2[i]:degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))else:degree = degree + 1degree = degree / len(hist1)return degree# Hash值对比def cmpHash(hash1, hash2):n = 0# hash长度不同则返回-1代表传参出错if len(hash1)!=len(hash2):return -1# 遍历判断for i in range(len(hash1)):# 不相等则n计数+1,n最终为相似度if hash1[i] != hash2[i]:n = n + 1return nimg1 = cv2.imread('openpic/x1y2.png') # 11--- 16 ----13 ---- 0.43img2 = cv2.imread('openpic/x2y4.png')img1 = cv2.imread('openpic/x3y5.png') # 10----11 ----8------0.25img2 = cv2.imread('openpic/x9y1.png')img1 = cv2.imread('openpic/x1y2.png') # 6------5 ----2--------0.84img2 = cv2.imread('openpic/x2y6.png')img1 = cv2.imread('openpic/t1.png') # 14------19---10--------0.70img2 = cv2.imread('openpic/t2.png')img1 = cv2.imread('openpic/t1.png') # 39------33---18--------0.58img2 = cv2.imread('openpic/t3.png')hash1 = aHash(img1)hash2 = aHash(img2)n = cmpHash(hash1, hash2)print('均值哈希算法相似度:', n)hash1 = dHash(img1)hash2 = dHash(img2)n = cmpHash(hash1, hash2)print('差值哈希算法相似度:', n)hash1 = pHash(img1)hash2 = pHash(img2)n = cmpHash(hash1, hash2)print('感知哈希算法相似度:', n)n = classify_hist_with_split(img1, img2)print('三直方图算法相似度:', n)
参考:
https://blog.csdn.net/haofan_/article/details/77097473?locationNum=7&fps=1
https://blog.csdn.net/feimengjuan/article/details/51279629
http://www.cnblogs.com/chujian1120/p/5512276.html
https://www.uisdc.com/head-first-histogram-design
