简介
在计算机历史的早期,其实没有什么 CISC 和 RISC 之分。所有的 CPU 其实都是 CISC。到了 70 年代末,RISC 开始登上了历史的舞台。当时,UC Berkeley 的大卫·帕特森(David Patterson)教授发现,实际在 CPU 运行的程序里,80% 的时间都是在使用 20% 的简单指令。于是,他就提出了 RISC 的理念。自此之后,RISC 类型的 CPU 开始快速蓬勃发展。
在硬件层面,我们要想支持更多的复杂指令,CPU 里面的电路就要更复杂,设计起来也就更困难。更复杂的电路,在散热和功耗层面,也会带来更大的挑战。在软件层面,支持更多的复杂指令,编译器的优化就变得更困难。毕竟,面向 2000 个指令来优化编译器和面向 500 个指令来优化编译器的困难是完全不同的。
于是,在 RISC 架构里面,CPU 选择把指令“精简”到 20% 的简单指令。而原先的复杂指令,则通过用简单指令组合起来来实现,让软件来实现硬件的功能。这样,CPU 的整个硬件设计就会变得更简单了,在硬件层面提升性能也会变得更容易了。
RISC 的 CPU 里完成指令的电路变得简单了,于是也就腾出了更多的空间。这个空间,常常被拿来放通用寄存器。因为 RISC 完成同样的功能,执行的指令数量要比 CISC 多,所以,如果需要反复从内存里面读取指令或者数据到寄存器里来,那么很多时间就会花在访问内存上。于是,RISC 架构的 CPU 往往就有更多的通用寄存器。除了寄存器这样的存储空间,RISC 的 CPU 也可以把更多的晶体管,用来实现更好的分支预测等相关功能,进一步去提升 CPU 实际的执行效率。
CISC 架构通过优化指令数减少 CPU 时间,RISC 架构通过优化 CPI 来实现,因为指令比价简单,所以需要时间就比较少。因为 RISC 降低了 CPU 硬件的设计和开发难度,所以从 80 年代开始,大部分新的 CPU 都开始采用 RISC 架构。
微指令架构
由于向前兼容的问题,Intel 并没有在 x86 架构之外另起炉灶,当时,Intel 想要在 CPU 进入 64 位的时代的时候,丢掉 x86 的历史包袱,所以推出了全新的 IA-64 的架构。但是,却因为不兼容 x86 的指令集,遭遇了重大的失败。
反而是 AMD,趁着 Intel 研发安腾的时候,推出了兼容 32 位 x86 指令集的 64 位架构,也就是 AMD64。如果你现在在 Linux 下安装各种软件包,一定经常会看到像下面这样带有 AMD64 字样的内容。这是因为 x86 下的 64 位的指令集 x86-64,并不是 Intel 发明的,而是 AMD 发明的。
Get:1 http://archive.ubuntu.com/ubuntu bionic/main amd64 fontconfig amd64 2.12.6-0ubuntu2 [169 kB]
花开两朵,各表一枝。Intel 在开发安腾处理器的同时,也在不断借鉴其他 RISC 处理器的设计思想。既然核心问题是要始终向前兼容 x86 的指令集,那么我们能不能不修改指令集,但是让 CISC 风格的指令集,用 RISC 的形式在 CPU 里面运行呢?
于是,从 Pentium Pro 时代开始,Intel 就开始在处理器里引入了微指令(Micro-Instructions/Micro-Ops)架构。而微指令架构的引入,也让 CISC 和 RISC 的分界变得模糊了。
在微指令架构的 CPU 里面,编译器编译出来的机器码和汇编代码并没有发生什么变化。但在指令译码的阶段,指令译码器“翻译”出来的,不再是某一条 CPU 指令。译码器会把一条机器码,“翻译”成好几条“微指令”。这里的一条条微指令,就不再是 CISC 风格的了,而是变成了固定长度的 RISC 风格的了。
这些 RISC 风格的微指令,会被放到一个微指令缓冲区里面,然后再从缓冲区里面,分发给到后面的超标量,并且是乱序执行的流水线架构里面。不过这个流水线架构里面接受的,就不是复杂的指令,而是精简的指令了。在这个架构里,我们的指令译码器相当于变成了设计模式里的一个“适配器”(Adaptor)。这个适配器,填平了 CISC 和 RISC 之间的指令差异。
不过,这样一个能够把 CISC 的指令译码成 RISC 指令的指令译码器,比原来的指令译码器要复杂。这也就意味着更复杂的电路和更长的译码时间。为解决这个问题首先我们知道,之所以大家认为 RISC 优于 CISC,来自于一个数字统计,那就是在实际的程序运行过程中,有 80% 运行的代码用着 20% 的常用指令。这意味着,CPU 里执行的代码有很强的局部性。而对于有着很强局部性的问题,常见的一个解决方案就是使用缓存。
所以,Intel 就在 CPU 里面加了一层 L0 Cache。这个 Cache 保存的就是指令译码器把 CISC 的指令“翻译”成 RISC 的微指令的结果。于是,在大部分情况下,CPU 都可以从 Cache 里面拿到译码结果,而不需要让译码器去进行实际的译码操作。这样不仅优化了性能,因为译码器的晶体管开关动作变少了,还减少了功耗。
因为“微指令”架构的存在,从 Pentium Pro 开始,Intel 处理器已经不是一个纯粹的 CISC 处理器了。它同样融合了大量 RISC 类型的处理器设计。不过,由于 Intel 本身在 CPU 层面做的大量优化,比如乱序执行、分支预测等相关工作,x86 的 CPU 始终在功耗上还是要远远超过 RISC 架构的 ARM,所以最终在智能手机崛起替代 PC 的时代,落在了 ARM 后面。
ARM
2017 年,ARM 公司的 CEO Simon Segards 宣布,ARM 累积销售的芯片数量超过了 1000 亿。作为一个从 12 个人起步,在 80 年代想要获取 Intel 的 80286 架构授权来制造 CPU 的公司,ARM 是如何在移动端把自己的芯片塑造成了最终的霸主呢?
ARM 这个名字现在的含义,是“Advanced RISC Machines”。你从名字就能够看出来,ARM 的芯片是基于 RISC 架构的。不过,ARM 能够在移动端战胜 Intel,并不是因为 RISC 架构。
到了 21 世纪的今天,CISC 和 RISC 架构的分界已经没有那么明显了。Intel 和 AMD 的 CPU 也都是采用译码成 RISC 风格的微指令来运行。而 ARM 的芯片,一条指令同样需要多个时钟周期,有乱序执行和多发射。我甚至看到过这样的评价,“ARM 和 RISC 的关系,只有在名字上”。
ARM 真正能够战胜 Intel,我觉得主要是因为下面这两点原因。
第一点是功耗优先的设计。一个 4 核的 Intel i7 的 CPU,设计的时候功率就是 130W。而一块 ARM A8 的单个核心的 CPU,设计功率只有 2W。两者之间差出了 100 倍。在移动设备上,功耗是一个远比性能更重要的指标,毕竟我们不能随时在身上带个发电机。ARM 的 CPU,主频更低,晶体管更少,高速缓存更小,乱序执行的能力更弱。所有这些,都是为了功耗所做的妥协。
第二点则是低价。ARM 并没有自己垄断 CPU 的生产和制造,只是进行 CPU 设计,然后把对应的知识产权授权出去,让其他的厂商来生产 ARM 架构的 CPU。它甚至还允许这些厂商可以基于 ARM 的架构和指令集,设计属于自己的 CPU。像苹果、三星、华为,它们都是拿到了基于 ARM 体系架构设计和制造 CPU 的授权。ARM 自己只是收取对应的专利授权费用。多个厂商之间的竞争,使得 ARM 的芯片在市场上价格很便宜。所以,尽管 ARM 的芯片的出货量远大于 Intel,但是收入和利润却比不上 Intel。