- SciPy.org
- Docs
- SciPy v1.4.1 Reference Guide
- Statistical functions (
scipy.stats
) - index
- modules
- next
- previous
scipy.stats.zscore
scipy.stats.zscore
(a, axis=0, ddof=0, nan_policy=’propagate’)[source]
Compute the z score.
Compute the z score of each value in the sample, relative to the sample mean and standard deviation.
Parameters
a : array_like
An array like object containing the sample data.
axis :int or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole array a.
ddof : int, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0.
nan_policy :{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.
Returns
zscore:array_like
The z-scores, standardized by mean and standard deviation of input array a.
Notes
This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).
Examples
a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
from scipy import stats
stats.zscore(a)
Computing along a specified axis, using n-1 degrees of freedom (ddof=1
) to calculate the standard deviation:
b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
stats.zscore(b, axis=1, ddof=1)
Previous topic
Next topic
scipy.stats.wasserstein_distance
Quick search
- © Copyright 2008-2019, The SciPy community.
- Last updated on Dec 19, 2019.
- Created using Sphinx 2.2.1.