记录是按照行来存储的,但是数据库的读取并不以行为单位,否则一次读取(也就是一次 I/O 操作)只能处理一行数据,效率会非常低。因此在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载。也就是说,数据库管理存储空间的基本单位是页(Page)。
一个页中可以存储多个行记录(Row),同时在数据库中,还存在着区(Extent)、段(Segment)和表空间(Tablespace)。行、页、区、段、表空间的关系如下图所示:
区(Extent)是比页大一级的存储结构,在 InnoDB 存储引擎中,一个区会分配 64 个连续的页。因为 InnoDB 中的页大小默认是 16KB,所以一个区的大小是 64*16KB=1MB。
段(Segment)由一个或多个区组成,区在文件系统是一个连续分配的空间(在 InnoDB 中是连续的 64 个页),不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存在。当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。
表空间(Tablespace)是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间、用户表空间、撤销表空间、临时表空间等。
数据页内的结构是怎样的
页(Page)如果按类型划分的话,常见的有数据页(保存 B+ 树节点)、系统页、Undo 页和事务数据页等。数据页是我们最常使用的页。
表页的大小限定了表行的最大长度,不同 DBMS 的表页大小不同。比如在 MySQL 的 InnoDB 存储引擎中,默认页的大小是 16KB,我们可以通过下面的命令来进行查看:
show variables like '%innodb_page_size%';
数据库 I/O 操作的最小单位是页,与数据库相关的内容都会存储在页结构里。数据页包括七个部分,分别是文件头(File Header)、页头(Page Header)、最大最小记录(Infimum+supremum)、用户记录(User Records)、空闲空间(Free Space)、页目录(Page Directory)和文件尾(File Tailer)。
页结构的示意图如下所示:
7 个部分作用
从数据页的角度看 B+ 树是如何进行查询的
MySQL 的 InnoDB 存储引擎采用 B+ 树作为索引,而索引又可以分成聚集索引和非聚集索引(二级索引),这些索引都相当于一棵 B+ 树,如图所示。一棵 B+ 树按照节点类型可以分成两部分:
叶子节点,B+ 树最底层的节点,节点的高度为 0,存储行记录。
非叶子节点,节点的高度大于 0,存储索引键和页面指针,并不存储行记录本身。
在一棵 B+ 树中,每个节点都是一个页,每次新建节点的时候,就会申请一个页空间。同一层上的节点之间,通过页的结构构成一个双向的链表(页文件头中的两个指针字段)。非叶子节点,包括了多个索引行,每个索引行里存储索引键和指向下一层页面的页面指针。最后是叶子节点,它存储了关键字和行记录,在节点内部(也就是页结构的内部)记录之间是一个单向的链表,但是对记录进行查找,则可以通过页目录采用二分查找的方式来进行。
当从页结构来理解 B+ 树的结构的时候,可以帮理解一些通过索引进行检索的原理:
1.B+ 树是如何进行记录检索的?
如果通过 B+ 树的索引查询行记录,首先是从 B+ 树的根开始,逐层检索,直到找到叶子节点,也就是找到对应的数据页为止,将数据页加载到内存中,页目录中的槽(slot)采用二分查找的方式先找到一个粗略的记录分组,然后再在分组中通过链表遍历的方式查找记录。
- 普通索引和唯一索引在查询效率上有什么不同?
我们创建索引的时候可以是普通索引,也可以是唯一索引,那么这两个索引在查询效率上有什么不同呢?
唯一索引就是在普通索引上增加了约束性,也就是关键字唯一,找到了关键字就停止检索。而普通索引,可能会存在用户记录中的关键字相同的情况,根据页结构的原理,当我们读取一条记录的时候,不是单独将这条记录从磁盘中读出去,而是将这个记录所在的页加载到内存中进行读取。InnoDB 存储引擎的页大小为 16KB,在一个页中可能存储着上千个记录,因此在普通索引的字段上进行查找也就是在内存中多几次 “判断下一条记录” 的操作,对于 CPU 来说,这些操作所消耗的时间是可以忽略不计的。所以对一个索引字段进行检索,采用普通索引还是唯一索引在检索效率上基本上没有差别。