当我们需要知道目标物体位置的时候,通过服务通信的机制,岂不是更加合理。
自定义消息
bool get # 获取目标位置的指令---int32 x # 目标的X坐标int32 y # 目标的Y坐标
client节点
import rclpy # ROS2 Python接口库from rclpy.node import Node # ROS2 节点类from learning_interface.srv import GetObjectPosition # 自定义的服务接口class objectClient(Node):def __init__(self, name):super().__init__(name) # ROS2节点父类初始化self.client = self.create_client(GetObjectPosition, 'get_target_position')while not self.client.wait_for_service(timeout_sec=1.0):self.get_logger().info('service not available, waiting again...')self.request = GetObjectPosition.Request()def send_request(self):self.request.get = Trueself.future = self.client.call_async(self.request)def main(args=None):rclpy.init(args=args) # ROS2 Python接口初始化node = objectClient("service_object_client") # 创建ROS2节点对象并进行初始化node.send_request()while rclpy.ok():rclpy.spin_once(node)if node.future.done():try:response = node.future.result()except Exception as e:node.get_logger().info('Service call failed %r' % (e,))else:node.get_logger().info('Result of object position:\n x: %d y: %d' %(response.x, response.y))breaknode.destroy_node() # 销毁节点对象rclpy.shutdown() # 关闭ROS2 Python接口
server节点
import rclpy # ROS2 Python接口库from rclpy.node import Node # ROS2 节点类from sensor_msgs.msg import Image # 图像消息类型import numpy as np # Python数值计算库from cv_bridge import CvBridge # ROS与OpenCV图像转换类import cv2 # Opencv图像处理库from learning_interface.srv import GetObjectPosition # 自定义的服务接口lower_red = np.array([0, 90, 128]) # 红色的HSV阈值下限upper_red = np.array([180, 255, 255]) # 红色的HSV阈值上限class ImageSubscriber(Node):def __init__(self, name):super().__init__(name) # ROS2节点父类初始化self.sub = self.create_subscription(Image, 'image_raw', self.listener_callback, 10) # 创建订阅者对象(消息类型、话题名、订阅者回调函数、队列长度)self.cv_bridge = CvBridge() # 创建一个图像转换对象,用于OpenCV图像与ROS的图像消息的互相转换self.srv = self.create_service(GetObjectPosition, # 创建服务器对象(接口类型、服务名、服务器回调函数)'get_target_position',self.object_position_callback)self.objectX = 0self.objectY = 0def object_detect(self, image):hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 图像从BGR颜色模型转换为HSV模型mask_red = cv2.inRange(hsv_img, lower_red, upper_red) # 图像二值化contours, hierarchy = cv2.findContours(mask_red, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) # 图像中轮廓检测for cnt in contours: # 去除一些轮廓面积太小的噪声if cnt.shape[0] < 150:continue(x, y, w, h) = cv2.boundingRect(cnt) # 得到苹果所在轮廓的左上角xy像素坐标及轮廓范围的宽和高cv2.drawContours(image, [cnt], -1, (0, 255, 0), 2) # 将苹果的轮廓勾勒出来cv2.circle(image, (int(x+w/2), int(y+h/2)), 5,(0, 255, 0), -1) # 将苹果的图像中心点画出来self.objectX = int(x+w/2)self.objectY = int(y+h/2)cv2.imshow("object", image) # 使用OpenCV显示处理后的图像效果cv2.waitKey(50)def listener_callback(self, data):self.get_logger().info('Receiving video frame') # 输出日志信息,提示已进入回调函数image = self.cv_bridge.imgmsg_to_cv2(data, 'bgr8') # 将ROS的图像消息转化成OpenCV图像self.object_detect(image) # 苹果检测def object_position_callback(self, request, response): # 创建回调函数,执行收到请求后对数据的处理if request.get == True:response.x = self.objectX # 目标物体的XY坐标response.y = self.objectYself.get_logger().info('Object position\nx: %d y: %d' %(response.x, response.y)) # 输出日志信息,提示已经反馈else:response.x = 0response.y = 0self.get_logger().info('Invalid command') # 输出日志信息,提示已经反馈return responsedef main(args=None): # ROS2节点主入口main函数rclpy.init(args=args) # ROS2 Python接口初始化node = ImageSubscriber("service_object_server") # 创建ROS2节点对象并进行初始化rclpy.spin(node) # 循环等待ROS2退出node.destroy_node() # 销毁节点对象rclpy.shutdown() # 关闭ROS2 Python接口
