一.Hashtable介绍
Hashtable 简介
和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都不可以为null。此外,Hashtable中的映射不是有序的。
Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。
Hashtable的构造函数
// 默认构造函数。public Hashtable()// 指定“容量大小”的构造函数public Hashtable(int initialCapacity)// 指定“容量大小”和“加载因子”的构造函数public Hashtable(int initialCapacity, float loadFactor)// 包含“子Map”的构造函数public Hashtable(Map<? extends K, ? extends V> t)
Hashtable的API
synchronized void clear()synchronized Object clone()boolean contains(Object value)synchronized boolean containsKey(Object key)synchronized boolean containsValue(Object value)synchronized Enumeration<V> elements()synchronized Set<Entry<K, V>> entrySet()synchronized boolean equals(Object object)synchronized V get(Object key)synchronized int hashCode()synchronized boolean isEmpty()synchronized Set<K> keySet()synchronized Enumeration<K> keys()synchronized V put(K key, V value)synchronized void putAll(Map<? extends K, ? extends V> map)synchronized V remove(Object key)synchronized int size()synchronized String toString()synchronized Collection<V> values()
二.Hashtable数据结构
Hashtable的继承关系
java.lang.Object↳ java.util.Dictionary<K, V>↳ java.util.Hashtable<K, V>public class Hashtable<K,V> extends Dictionary<K,V>implements Map<K,V>, Cloneable, java.io.Serializable { }
Hashtable与Map关系如下图:
从图中可以看出:
(01) Hashtable继承于Dictionary类,实现了Map接口。Map是”key-value键值对”接口,Dictionary是声明了操作”键值对”函数接口的抽象类。
(02) Hashtable是通过”拉链法”实现的哈希表。它包括几个重要的成员变量:table, count, threshold, loadFactor, modCount。
table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的”key-value键值对”都是存储在Entry数组中的。
count是Hashtable的大小,它是Hashtable保存的键值对的数量。
threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值=”容量*加载因子”。
loadFactor就是加载因子。
modCount是用来实现fail-fast机制的
三.Hashtable源码解析(基于JDK1.6.0_45)
为了更了解Hashtable的原理,下面对Hashtable源码代码作出分析。
在阅读源码时,建议参考后面的说明来建立对Hashtable的整体认识,这样更容易理解Hashtable。
package java.util;import java.io.*;public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, Cloneable, java.io.Serializable {// Hashtable保存key-value的数组。// Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表private transient Entry[] table;// Hashtable中元素的实际数量private transient int count;// 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)private int threshold;// 加载因子private float loadFactor;// Hashtable被改变的次数private transient int modCount = 0;// 序列版本号private static final long serialVersionUID = 1421746759512286392L;// 指定“容量大小”和“加载因子”的构造函数public Hashtable(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal Load: "+loadFactor);if (initialCapacity==0)initialCapacity = 1;this.loadFactor = loadFactor;table = new Entry[initialCapacity];threshold = (int)(initialCapacity * loadFactor);}// 指定“容量大小”的构造函数public Hashtable(int initialCapacity) {this(initialCapacity, 0.75f);}// 默认构造函数。public Hashtable() {// 默认构造函数,指定的容量大小是11;加载因子是0.75this(11, 0.75f);}// 包含“子Map”的构造函数public Hashtable(Map<? extends K, ? extends V> t) {this(Math.max(2*t.size(), 11), 0.75f);// 将“子Map”的全部元素都添加到Hashtable中putAll(t);}public synchronized int size() {return count;}public synchronized boolean isEmpty() {return count == 0;}// 返回“所有key”的枚举对象public synchronized Enumeration<K> keys() {return this.<K>getEnumeration(KEYS);}// 返回“所有value”的枚举对象public synchronized Enumeration<V> elements() {return this.<V>getEnumeration(VALUES);}// 判断Hashtable是否包含“值(value)”public synchronized boolean contains(Object value) {// Hashtable中“键值对”的value不能是null,// 若是null的话,抛出异常!if (value == null) {throw new NullPointerException();}// 从后向前遍历table数组中的元素(Entry)// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于valueEntry tab[] = table;for (int i = tab.length ; i-- > 0 ;) {for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {if (e.value.equals(value)) {return true;}}}return false;}public boolean containsValue(Object value) {return contains(value);}// 判断Hashtable是否包含keypublic synchronized boolean containsKey(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,// % tab.length 的目的是防止数据越界int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return true;}}return false;}// 返回key对应的value,没有的话返回nullpublic synchronized V get(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return e.value;}}return null;}// 调整Hashtable的长度,将长度变成原来的(2倍+1)// (01) 将“旧的Entry数组”赋值给一个临时变量。// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中protected void rehash() {int oldCapacity = table.length;Entry[] oldMap = table;int newCapacity = oldCapacity * 2 + 1;Entry[] newMap = new Entry[newCapacity];modCount++;threshold = (int)(newCapacity * loadFactor);table = newMap;for (int i = oldCapacity ; i-- > 0 ;) {for (Entry<K,V> old = oldMap[i] ; old != null ; ) {Entry<K,V> e = old;old = old.next;int index = (e.hash & 0x7FFFFFFF) % newCapacity;e.next = newMap[index];newMap[index] = e;}}}// 将“key-value”添加到Hashtable中public synchronized V put(K key, V value) {// Hashtable中不能插入value为null的元素!!!if (value == null) {throw new NullPointerException();}// 若“Hashtable中已存在键为key的键值对”,// 则用“新的value”替换“旧的value”Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {V old = e.value;e.value = value;return old;}}// 若“Hashtable中不存在键为key的键值对”,// (01) 将“修改统计数”+1modCount++;// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)// 则调整Hashtable的大小if (count >= threshold) {// Rehash the table if the threshold is exceededrehash();tab = table;index = (hash & 0x7FFFFFFF) % tab.length;}// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中Entry<K,V> e = tab[index];// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。tab[index] = new Entry<K,V>(hash, key, value, e);// (05) 将“Hashtable的实际容量”+1count++;return null;}// 删除Hashtable中键为key的元素public synchronized V remove(Object key) {Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”// 然后在链表中找出要删除的节点,并删除该节点。for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {modCount++;if (prev != null) {prev.next = e.next;} else {tab[index] = e.next;}count--;V oldValue = e.value;e.value = null;return oldValue;}}return null;}// 将“Map(t)”的中全部元素逐一添加到Hashtable中public synchronized void putAll(Map<? extends K, ? extends V> t) {for (Map.Entry<? extends K, ? extends V> e : t.entrySet())put(e.getKey(), e.getValue());}// 清空Hashtable// 将Hashtable的table数组的值全部设为nullpublic synchronized void clear() {Entry tab[] = table;modCount++;for (int index = tab.length; --index >= 0; )tab[index] = null;count = 0;}// 克隆一个Hashtable,并以Object的形式返回。public synchronized Object clone() {try {Hashtable<K,V> t = (Hashtable<K,V>) super.clone();t.table = new Entry[table.length];for (int i = table.length ; i-- > 0 ; ) {t.table[i] = (table[i] != null)? (Entry<K,V>) table[i].clone() : null;}t.keySet = null;t.entrySet = null;t.values = null;t.modCount = 0;return t;} catch (CloneNotSupportedException e) {// this shouldn't happen, since we are Cloneablethrow new InternalError();}}public synchronized String toString() {int max = size() - 1;if (max == -1)return "{}";StringBuilder sb = new StringBuilder();Iterator<Map.Entry<K,V>> it = entrySet().iterator();sb.append('{');for (int i = 0; ; i++) {Map.Entry<K,V> e = it.next();K key = e.getKey();V value = e.getValue();sb.append(key == this ? "(this Map)" : key.toString());sb.append('=');sb.append(value == this ? "(this Map)" : value.toString());if (i == max)return sb.append('}').toString();sb.append(", ");}}// 获取Hashtable的枚举类对象// 若Hashtable的实际大小为0,则返回“空枚举类”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Enumeration<T> getEnumeration(int type) {if (count == 0) {return (Enumeration<T>)emptyEnumerator;} else {return new Enumerator<T>(type, false);}}// 获取Hashtable的迭代器// 若Hashtable的实际大小为0,则返回“空迭代器”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Iterator<T> getIterator(int type) {if (count == 0) {return (Iterator<T>) emptyIterator;} else {return new Enumerator<T>(type, true);}}// Hashtable的“key的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<K> keySet = null;// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<Map.Entry<K,V>> entrySet = null;// Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素private transient volatile Collection<V> values = null;// 返回一个被synchronizedSet封装后的KeySet对象// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步public Set<K> keySet() {if (keySet == null)keySet = Collections.synchronizedSet(new KeySet(), this);return keySet;}// Hashtable的Key的Set集合。// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。private class KeySet extends AbstractSet<K> {public Iterator<K> iterator() {return getIterator(KEYS);}public int size() {return count;}public boolean contains(Object o) {return containsKey(o);}public boolean remove(Object o) {return Hashtable.this.remove(o) != null;}public void clear() {Hashtable.this.clear();}}// 返回一个被synchronizedSet封装后的EntrySet对象// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步public Set<Map.Entry<K,V>> entrySet() {if (entrySet==null)entrySet = Collections.synchronizedSet(new EntrySet(), this);return entrySet;}// Hashtable的Entry的Set集合。// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。private class EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {return getIterator(ENTRIES);}public boolean add(Map.Entry<K,V> o) {return super.add(o);}// 查找EntrySet中是否包含Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,查找Entry链表中是否存在Objectpublic boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry entry = (Map.Entry)o;Object key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry e = tab[index]; e != null; e = e.next)if (e.hash==hash && e.equals(entry))return true;return false;}// 删除元素Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,删除链表中的元素Objectpublic boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index], prev = null; e != null;prev = e, e = e.next) {if (e.hash==hash && e.equals(entry)) {modCount++;if (prev != null)prev.next = e.next;elsetab[index] = e.next;count--;e.value = null;return true;}}return false;}public int size() {return count;}public void clear() {Hashtable.this.clear();}}// 返回一个被synchronizedCollection封装后的ValueCollection对象// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步public Collection<V> values() {if (values==null)values = Collections.synchronizedCollection(new ValueCollection(),this);return values;}// Hashtable的value的Collection集合。// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。private class ValueCollection extends AbstractCollection<V> {public Iterator<V> iterator() {return getIterator(VALUES);}public int size() {return count;}public boolean contains(Object o) {return containsValue(o);}public void clear() {Hashtable.this.clear();}}// 重新equals()函数// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等public synchronized boolean equals(Object o) {if (o == this)return true;if (!(o instanceof Map))return false;Map<K,V> t = (Map<K,V>) o;if (t.size() != size())return false;try {// 通过迭代器依次取出当前Hashtable的key-value键值对// 并判断该键值对,存在于Hashtable(o)中。// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。Iterator<Map.Entry<K,V>> i = entrySet().iterator();while (i.hasNext()) {Map.Entry<K,V> e = i.next();K key = e.getKey();V value = e.getValue();if (value == null) {if (!(t.get(key)==null && t.containsKey(key)))return false;} else {if (!value.equals(t.get(key)))return false;}}} catch (ClassCastException unused) {return false;} catch (NullPointerException unused) {return false;}return true;}// 计算Hashtable的哈希值// 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。public synchronized int hashCode() {int h = 0;if (count == 0 || loadFactor < 0)return h; // Returns zeroloadFactor = -loadFactor; // Mark hashCode computation in progressEntry[] tab = table;for (int i = 0; i < tab.length; i++)for (Entry e = tab[i]; e != null; e = e.next)h += e.key.hashCode() ^ e.value.hashCode();loadFactor = -loadFactor; // Mark hashCode computation completereturn h;}// java.io.Serializable的写入函数// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中private synchronized void writeObject(java.io.ObjectOutputStream s)throws IOException{// Write out the length, threshold, loadfactors.defaultWriteObject();// Write out length, count of elements and then the key/value objectss.writeInt(table.length);s.writeInt(count);for (int index = table.length-1; index >= 0; index--) {Entry entry = table[index];while (entry != null) {s.writeObject(entry.key);s.writeObject(entry.value);entry = entry.next;}}}// java.io.Serializable的读取函数:根据写入方式读出// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出private void readObject(java.io.ObjectInputStream s)throws IOException, ClassNotFoundException{// Read in the length, threshold, and loadfactors.defaultReadObject();// Read the original length of the array and number of elementsint origlength = s.readInt();int elements = s.readInt();// Compute new size with a bit of room 5% to grow but// no larger than the original size. Make the length// odd if it's large enough, this helps distribute the entries.// Guard against the length ending up zero, that's not valid.int length = (int)(elements * loadFactor) + (elements / 20) + 3;if (length > elements && (length & 1) == 0)length--;if (origlength > 0 && length > origlength)length = origlength;Entry[] table = new Entry[length];count = 0;// Read the number of elements and then all the key/value objectsfor (; elements > 0; elements--) {K key = (K)s.readObject();V value = (V)s.readObject();// synch could be eliminated for performancereconstitutionPut(table, key, value);}this.table = table;}private void reconstitutionPut(Entry[] tab, K key, V value)throws StreamCorruptedException{if (value == null) {throw new java.io.StreamCorruptedException();}// Makes sure the key is not already in the hashtable.// This should not happen in deserialized version.int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {throw new java.io.StreamCorruptedException();}}// Creates the new entry.Entry<K,V> e = tab[index];tab[index] = new Entry<K,V>(hash, key, value, e);count++;}// Hashtable的Entry节点,它本质上是一个单向链表。// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表private static class Entry<K,V> implements Map.Entry<K,V> {// 哈希值int hash;K key;V value;// 指向的下一个Entry,即链表的下一个节点Entry<K,V> next;// 构造函数protected Entry(int hash, K key, V value, Entry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}protected Object clone() {return new Entry<K,V>(hash, key, value,(next==null ? null : (Entry<K,V>) next.clone()));}public K getKey() {return key;}public V getValue() {return value;}// 设置value。若value是null,则抛出异常。public V setValue(V value) {if (value == null)throw new NullPointerException();V oldValue = this.value;this.value = value;return oldValue;}// 覆盖equals()方法,判断两个Entry是否相等。// 若两个Entry的key和value都相等,则认为它们相等。public boolean equals(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry e = (Map.Entry)o;return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&(value==null ? e.getValue()==null : value.equals(e.getValue()));}public int hashCode() {return hash ^ (value==null ? 0 : value.hashCode());}public String toString() {return key.toString()+"="+value.toString();}}private static final int KEYS = 0;private static final int VALUES = 1;private static final int ENTRIES = 2;// Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。private class Enumerator<T> implements Enumeration<T>, Iterator<T> {// 指向Hashtable的tableEntry[] table = Hashtable.this.table;// Hashtable的总的大小int index = table.length;Entry<K,V> entry = null;Entry<K,V> lastReturned = null;int type;// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志// iterator为true,表示它是迭代器;否则,是枚举类。boolean iterator;// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。protected int expectedModCount = modCount;Enumerator(int type, boolean iterator) {this.type = type;this.iterator = iterator;}// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。public boolean hasMoreElements() {Entry<K,V> e = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (e == null && i > 0) {e = t[--i];}entry = e;index = i;return e != null;}// 获取下一个元素// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。// 然后,依次向后遍历单向链表Entry。public T nextElement() {Entry<K,V> et = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (et == null && i > 0) {et = t[--i];}entry = et;index = i;if (et != null) {Entry<K,V> e = lastReturned = entry;entry = e.next;return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);}throw new NoSuchElementException("Hashtable Enumerator");}// 迭代器Iterator的判断是否存在下一个元素// 实际上,它是调用的hasMoreElements()public boolean hasNext() {return hasMoreElements();}// 迭代器获取下一个元素// 实际上,它是调用的nextElement()public T next() {if (modCount != expectedModCount)throw new ConcurrentModificationException();return nextElement();}// 迭代器的remove()接口。// 首先,它在table数组中找出要删除元素所在的Entry,// 然后,删除单向链表Entry中的元素。public void remove() {if (!iterator)throw new UnsupportedOperationException();if (lastReturned == null)throw new IllegalStateException("Hashtable Enumerator");if (modCount != expectedModCount)throw new ConcurrentModificationException();synchronized(Hashtable.this) {Entry[] tab = Hashtable.this.table;int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index], prev = null; e != null;prev = e, e = e.next) {if (e == lastReturned) {modCount++;expectedModCount++;if (prev == null)tab[index] = e.next;elseprev.next = e.next;count--;lastReturned = null;return;}}throw new ConcurrentModificationException();}}}private static Enumeration emptyEnumerator = new EmptyEnumerator();private static Iterator emptyIterator = new EmptyIterator();// 空枚举类// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。private static class EmptyEnumerator implements Enumeration<Object> {EmptyEnumerator() {}// 空枚举类的hasMoreElements() 始终返回falsepublic boolean hasMoreElements() {return false;}// 空枚举类的nextElement() 抛出异常public Object nextElement() {throw new NoSuchElementException("Hashtable Enumerator");}}// 空迭代器// 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。private static class EmptyIterator implements Iterator<Object> {EmptyIterator() {}public boolean hasNext() {return false;}public Object next() {throw new NoSuchElementException("Hashtable Iterator");}public void remove() {throw new IllegalStateException("Hashtable Iterator");}}}
说明: 在详细介绍Hashtable的代码之前,我们需要了解:和Hashmap一样,Hashtable也是一个散列表,它也是通过“拉链法”解决哈希冲突的。
第3.1部分 Hashtable的“拉链法”相关内容
3.1.1 Hashtable数据存储数组
private transient Entry[] table;
Hashtable中的key-value都是存储在table数组中的。
3.1.2 数据节点Entry的数据结构
private static class Entry<K,V> implements Map.Entry<K,V> {
// 哈希值
int hash;
K key;
V value;
// 指向的下一个Entry,即链表的下一个节点
Entry<K,V> next;
// 构造函数
protected Entry(int hash, K key, V value, Entry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
protected Object clone() {
return new Entry<K,V>(hash, key, value,
(next==null ? null : (Entry<K,V>) next.clone()));
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
// 设置value。若value是null,则抛出异常。
public V setValue(V value) {
if (value == null)
throw new NullPointerException();
V oldValue = this.value;
this.value = value;
return oldValue;
}
// 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
return (key==null ? e.getKey()==null : key.equals(e.getKey())) &&
(value==null ? e.getValue()==null : value.equals(e.getValue()));
}
public int hashCode() {
return hash ^ (value==null ? 0 : value.hashCode());
}
public String toString() {
return key.toString()+"="+value.toString();
}
}
从中,我们可以看出 Entry 实际上就是一个单向链表。这也是为什么我们说Hashtable是通过拉链法解决哈希冲突的。
Entry 实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数。这些都是基本的读取/修改key、value值的函数。
第3.2部分 Hashtable的构造函数
Hashtable共包括4个构造函数
// 默认构造函数。
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
}
// 指定“容量大小”的构造函数
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
// 指定“容量大小”和“加载因子”的构造函数
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry[initialCapacity];
threshold = (int)(initialCapacity * loadFactor);
}
// 包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2*t.size(), 11), 0.75f);
// 将“子Map”的全部元素都添加到Hashtable中
putAll(t);
}
第3.3部分 Hashtable的主要对外接口
3.3.1 clear()
clear() 的作用是清空Hashtable。它是将Hashtable的table数组的值全部设为null
public synchronized void clear() {
Entry tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
}
3.3.2 contains() 和 containsValue()
contains() 和 containsValue() 的作用都是判断Hashtable是否包含“值(value)”
public boolean containsValue(Object value) {
return contains(value);
}
public synchronized boolean contains(Object value) {
// Hashtable中“键值对”的value不能是null,
// 若是null的话,抛出异常!
if (value == null) {
throw new NullPointerException();
}
// 从后向前遍历table数组中的元素(Entry)
// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于value
Entry tab[] = table;
for (int i = tab.length ; i-- > 0 ;) {
for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
3.3.3 containsKey()
containsKey() 的作用是判断Hashtable是否包含key
public synchronized boolean containsKey(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
// % tab.length 的目的是防止数据越界
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
}
3.3.4 elements()
elements() 的作用是返回“所有value”的枚举对象
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
}
// 获取Hashtable的枚举类对象
private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return (Enumeration<T>)emptyEnumerator;
} else {
return new Enumerator<T>(type, false);
}
}
从中,我们可以看出:
(01) 若Hashtable的实际大小为0,则返回“空枚举类”对象emptyEnumerator;
(02) 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)
我们先看看emptyEnumerator对象是如何实现的
private static Enumeration emptyEnumerator = new EmptyEnumerator();
// 空枚举类
// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。
private static class EmptyEnumerator implements Enumeration<Object> {
EmptyEnumerator() {
}
// 空枚举类的hasMoreElements() 始终返回false
public boolean hasMoreElements() {
return false;
}
// 空枚举类的nextElement() 抛出异常
public Object nextElement() {
throw new NoSuchElementException("Hashtable Enumerator");
}
}
我们在来看看Enumeration类
Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry<K,V> entry = null;
Entry<K,V> lastReturned = null;
int type;
// Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志
// iterator为true,表示它是迭代器;否则,是枚举类。
boolean iterator;
// 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
protected int expectedModCount = modCount;
Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
}
// 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
public boolean hasMoreElements() {
Entry<K,V> e = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
}
// 获取下一个元素
// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”
// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
// 然后,依次向后遍历单向链表Entry。
public T nextElement() {
Entry<K,V> et = entry;
int i = index;
Entry[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<K,V> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
}
throw new NoSuchElementException("Hashtable Enumerator");
}
// 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
}
// 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
}
// 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
synchronized(Hashtable.this) {
Entry[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index], prev = null; e != null;
prev = e, e = e.next) {
if (e == lastReturned) {
modCount++;
expectedModCount++;
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
entrySet(), keySet(), keys(), values()的实现方法和elements()差不多,而且源码中已经明确的给出了注释。这里就不再做过多说明了。
3.3.5 get()
get() 的作用就是获取key对应的value,没有的话返回null
public synchronized V get(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
// 计算索引值,
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return e.value;
}
}
return null;
}
3.3.6 put()
put() 的作用是对外提供接口,让Hashtable对象可以通过put()将“key-value”添加到Hashtable中。
public synchronized V put(K key, V value) {
// Hashtable中不能插入value为null的元素!!!
if (value == null) {
throw new NullPointerException();
}
// 若“Hashtable中已存在键为key的键值对”,
// 则用“新的value”替换“旧的value”
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V old = e.value;
e.value = value;
return old;
}
}
// 若“Hashtable中不存在键为key的键值对”,
// (01) 将“修改统计数”+1
modCount++;
// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)
// 则调整Hashtable的大小
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
index = (hash & 0x7FFFFFFF) % tab.length;
}
// (03) 将“Hashtable中index”位置的Entry(链表)保存到e中
Entry<K,V> e = tab[index];
// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。
tab[index] = new Entry<K,V>(hash, key, value, e);
// (05) 将“Hashtable的实际容量”+1
count++;
return null;
}
3.3.7 putAll()
putAll() 的作用是将“Map(t)”的中全部元素逐一添加到Hashtable中
public synchronized void putAll(Map<? extends K, ? extends V> t) {
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
}
3.3.8 remove()
remove() 的作用就是删除Hashtable中键为key的元素
public synchronized V remove(Object key) {
Entry tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
// 找到“key对应的Entry(链表)”
// 然后在链表中找出要删除的节点,并删除该节点。
for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
第3.4部分 Hashtable实现的Cloneable接口
Hashtable实现了Cloneable接口,即实现了clone()方法。
clone()方法的作用很简单,就是克隆一个Hashtable对象并返回。
// 克隆一个Hashtable,并以Object的形式返回。
public synchronized Object clone() {
try {
Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
t.table = new Entry[table.length];
for (int i = table.length ; i-- > 0 ; ) {
t.table[i] = (table[i] != null)
? (Entry<K,V>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
}
第3.5部分 Hashtable实现的Serializable接口
Hashtable实现java.io.Serializable,分别实现了串行读取、写入功能。
串行写入函数就是将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
串行读取函数:根据写入方式读出将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the length, threshold, loadfactor
s.defaultWriteObject();
// Write out length, count of elements and then the key/value objects
s.writeInt(table.length);
s.writeInt(count);
for (int index = table.length-1; index >= 0; index--) {
Entry entry = table[index];
while (entry != null) {
s.writeObject(entry.key);
s.writeObject(entry.value);
entry = entry.next;
}
}
}
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the length, threshold, and loadfactor
s.defaultReadObject();
// Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt();
// Compute new size with a bit of room 5% to grow but
// no larger than the original size. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int)(elements * loadFactor) + (elements / 20) + 3;
if (length > elements && (length & 1) == 0)
length--;
if (origlength > 0 && length > origlength)
length = origlength;
Entry[] table = new Entry[length];
count = 0;
// Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
K key = (K)s.readObject();
V value = (V)s.readObject();
// synch could be eliminated for performance
reconstitutionPut(table, key, value);
}
this.table = table;
}
四.Hashtable遍历方式
4.1 遍历Hashtable的键值对
第一步:根据entrySet()获取Hashtable的“键值对”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
// 获取key
key = (String)entry.getKey();
// 获取value
integ = (Integer)entry.getValue();
}
4.2 通过Iterator遍历Hashtable的键
第一步:根据keySet()获取Hashtable的“键”的Set集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
// 获取key
key = (String)iter.next();
// 根据key,获取value
integ = (Integer)table.get(key);
}
4.3 通过Iterator遍历Hashtable的值
第一步:根据value()获取Hashtable的“值”的集合。
第二步:通过Iterator迭代器遍历“第一步”得到的集合。
// 假设table是Hashtable对象
// table中的key是String类型,value是Integer类型
Integer value = null;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}
4.4 通过Enumeration遍历Hashtable的键
第一步:根据keys()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
4.5 通过Enumeration遍历Hashtable的值
第一步:根据elements()获取Hashtable的集合。
第二步:通过Enumeration遍历“第一步”得到的集合。
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
遍历测试程序如下:
import java.util.*;
/*
* @desc 遍历Hashtable的测试程序。
* (01) 通过entrySet()去遍历key、value,参考实现函数:
* iteratorHashtableByEntryset()
* (02) 通过keySet()去遍历key,参考实现函数:
* iteratorHashtableByKeyset()
* (03) 通过values()去遍历value,参考实现函数:
* iteratorHashtableJustValues()
* (04) 通过Enumeration去遍历key,参考实现函数:
* enumHashtableKey()
* (05) 通过Enumeration去遍历value,参考实现函数:
* enumHashtableValue()
*
* @author skywang
*/
public class HashtableIteratorTest {
public static void main(String[] args) {
int val = 0;
String key = null;
Integer value = null;
Random r = new Random();
Hashtable table = new Hashtable();
for (int i=0; i<12; i++) {
// 随机获取一个[0,100)之间的数字
val = r.nextInt(100);
key = String.valueOf(val);
value = r.nextInt(5);
// 添加到Hashtable中
table.put(key, value);
System.out.println(" key:"+key+" value:"+value);
}
// 通过entrySet()遍历Hashtable的key-value
iteratorHashtableByEntryset(table) ;
// 通过keySet()遍历Hashtable的key-value
iteratorHashtableByKeyset(table) ;
// 单单遍历Hashtable的value
iteratorHashtableJustValues(table);
// 遍历Hashtable的Enumeration的key
enumHashtableKey(table);
// 遍历Hashtable的Enumeration的value
//enumHashtableValue(table);
}
/*
* 通过Enumeration遍历Hashtable的key
* 效率高!
*/
private static void enumHashtableKey(Hashtable table) {
if (table == null)
return ;
System.out.println("\nenumeration Hashtable");
Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
}
/*
* 通过Enumeration遍历Hashtable的value
* 效率高!
*/
private static void enumHashtableValue(Hashtable table) {
if (table == null)
return ;
System.out.println("\nenumeration Hashtable");
Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
System.out.println(enu.nextElement());
}
}
/*
* 通过entry set遍历Hashtable
* 效率高!
*/
private static void iteratorHashtableByEntryset(Hashtable table) {
if (table == null)
return ;
System.out.println("\niterator Hashtable By entryset");
String key = null;
Integer integ = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
key = (String)entry.getKey();
integ = (Integer)entry.getValue();
System.out.println(key+" -- "+integ.intValue());
}
}
/*
* 通过keyset来遍历Hashtable
* 效率低!
*/
private static void iteratorHashtableByKeyset(Hashtable table) {
if (table == null)
return ;
System.out.println("\niterator Hashtable By keyset");
String key = null;
Integer integ = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
key = (String)iter.next();
integ = (Integer)table.get(key);
System.out.println(key+" -- "+integ.intValue());
}
}
/*
* 遍历Hashtable的values
*/
private static void iteratorHashtableJustValues(Hashtable table) {
if (table == null)
return ;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
System.out.println(iter.next());
}
}
}
五.Hashtable示例
下面通过一个实例来学习如何使用Hashtable。
import java.util.*;
/*
* @desc Hashtable的测试程序。
*
* @author skywang
*/
public class HashtableTest {
public static void main(String[] args) {
testHashtableAPIs();
}
private static void testHashtableAPIs() {
// 初始化随机种子
Random r = new Random();
// 新建Hashtable
Hashtable table = new Hashtable();
// 添加操作
table.put("one", r.nextInt(10));
table.put("two", r.nextInt(10));
table.put("three", r.nextInt(10));
// 打印出table
System.out.println("table:"+table );
// 通过Iterator遍历key-value
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
Map.Entry entry = (Map.Entry)iter.next();
System.out.println("next : "+ entry.getKey() +" - "+entry.getValue());
}
// Hashtable的键值对个数
System.out.println("size:"+table.size());
// containsKey(Object key) :是否包含键key
System.out.println("contains key two : "+table.containsKey("two"));
System.out.println("contains key five : "+table.containsKey("five"));
// containsValue(Object value) :是否包含值value
System.out.println("contains value 0 : "+table.containsValue(new Integer(0)));
// remove(Object key) : 删除键key对应的键值对
table.remove("three");
System.out.println("table:"+table );
// clear() : 清空Hashtable
table.clear();
// isEmpty() : Hashtable是否为空
System.out.println((table.isEmpty()?"table is empty":"table is not empty") );
}
}
(某一次)运行结果:
table:{two=5, one=0, three=6}
next : two - 5
next : one - 0
next : three - 6
size:3
contains key two : true
contains key five : false
contains value 0 : true
table:{two=5, one=0}
table is empty

