HTTP 协议用于客户端和服务器端之间的通信
在两台计算机之间使用 HTTP 协议通信时,在一条通信线路上必定有一端是客户端,另一端则是服务器端。
请求报文是由请求方法、请求 URI、协议版本、可选的请求首部字段和内容实体构成的。
接着以一空行分隔,之后的内容称为资源实体的主体(entity body)。
响应报文基本上由协议版本、状态码(表示请求成功或失败的数字代码)、用以解释状态码的原因短语、可选的响应首部字段以及实体主体构成。稍后我们会对这些内容进行详细说明。
HTTP 是不保存状态的协议
HTTP 是一种不保存状态,即无状态(stateless)协议。HTTP 协议自身不对请求和响应之间的通信状态进行保存。也就是说在 HTTP 这个级别,协议对于发送过的请求或响应都不做持久化处理。
HTTP 协议自身不具备保存之前发送过的请求或响应的功能.
HTTP/1.1 虽然是无状态协议,但为了实现期望的保持状态功能,于是引入了 Cookie 技术。有了 Cookie 再用 HTTP 协议通信,就可以管理状态了。
请求 URI 定位资源
指定请求 URI 的方式有:
除此之外,如果不是访问特定资源而是对服务器本身发起请求,可以用一个 * 来代替请求 URI。下面这个例子是查询 HTTP 服务器端支持的 HTTP 方法种类。
告知服务器意图的 HTTP 方法
下面,我们介绍 HTTP/1.1 中可使用的方法。
GET :获取资源
GET 方法用来请求访问已被 URI 识别的资源。指定的资源经服务器端解析后返回响应内容。也就是说,如果请求的资源是文本,那就保持原样返回;如果是像 CGI(Common Gateway Interface,通用网关接口)那样的程序,则返回经过执行后的输出结果。
POST:传输实体主体
POST 方法用来传输实体的主体。
虽然用 GET 方法也可以传输实体的主体,但一般不用 GET 方法进行传输,而是用 POST 方法。但POST 的主要目的并不是获取响应的主体内容。
PUT:传输文件
PUT 方法用来传输文件。就像 FTP 协议的文件上传一样,要求在请求报文的主体中包含文件内容,然后保存到请求 URI 指定的位置。
但是,鉴于 HTTP/1.1 的 PUT 方法自身不带验证机制,任何人都可以上传文件 , 存在安全性问题,因此一般的 Web 网站不使用该方法。若配合 Web 应用程序的验证机制,或架构设计采用REST(REpresentational State Transfer,表征状态转移)标准的同类Web 网站,就可能会开放使用 PUT 方法。
HEAD:获得报文首部
HEAD 方法和 GET ??方法一样,只是不返回报文主体部分。用于确认URI 的有效性及资源更新的日期时间等。
DELETE:删除文件
DELETE 方法用来删除文件,是与 PUT 相反的方法。DELETE 方法按请求 URI 删除指定的资源。
但是,HTTP/1.1 的 DELETE 方法本身和 PUT 方法一样不带验证机制,所以一般的 Web 网站也不使用 DELETE 方法。当配合 Web 应用程序的验证机制,或遵守 REST 标准时还是有可能会开放使用的。
OPTIONS:询问支持的方法
OPTIONS 方法用来查询针对请求 URI 指定的资源支持的方法。
TRACE:追踪路径
TRACE 方法是让 Web 服务器端将之前的请求通信环回给客户端的方法。
发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个服务器端就将该数字减 1,当数值刚好减到 0 时,就停止继续传输,最后接收到请求的服务器端则返回状态码 200 OK 的响应。
客户端通过 TRACE 方法可以查询发送出去的请求是怎样被加工修改/ 篡改的。这是因为,请求想要连接到源目标服务器可能会通过代理中转,TRACE 方法就是用来确认连接过程中发生的一系列操作。但是,TRACE 方法本来就不怎么常用,再加上它容易引发XST(Cross-Site Tracing,跨站追踪)攻击,通常就更不会用到了。
CONNECT:要求用隧道协议连接代理
CONNECT 方法要求在与代理服务器通信时建立隧道,实现用隧道协议进行 TCP 通信。主要使用 SSL(Secure Sockets Layer,安全套接层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加 密后经网络隧道传输。
使用方法下达命令
方法的作用在于,可以指定请求的资源按期望产生某种行为。方法中有 GET、POST 和 HEAD 等。
持久连接节省通信量
使用浏览器浏览一个包含多张图片的 HTML 页面时,在发送请求访问 HTML 页面资源的同时,也会请求该 HTML 页面里包含的其他资源。因此,每次的请求都会造成无谓的 TCP 连接建立和断开,增加通信量的开销。
持久连接
为解决上述 TCP 连接的问题,HTTP/1.1 和一部分的 HTTP/1.0 想出了持久连接(HTTP Persistent Connections,也称为 HTTP keep-alive 或HTTP connection reuse)的方法。持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。
持久连接旨在建立 1 次 TCP 连接后进行多次请求和响应的交互。
持久连接的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。另外,减少开销的那部分时间,使HTTP 请求和响应能够更早地结束,这样 Web 页面的显示速度也就相应提高了。除了服务器端,客户端也需要支持持久连接。
管线化
持久连接使得多数请求以管线化(pipelining)方式发送成为可能。从前发送请求后需等待并收到响应,才能发送下一个请求。管线化技术出现后,不用等待响应亦可直接发送下一个请求。
而管线化技术则比持久连接还要快。请求数越多,时间差就越明显。
使用 Cookie 的状态管理
无状态协议当然也有它的优点。由于不必保存状态,自然可减少服务器的 CPU 及内存资源的消耗。从另一侧面来说,也正是因为 HTTP 协议本身是非常简单的,所以才会被应用在各种场景里。
保留无状态协议这个特征的同时又要解决类似的矛盾问题,于是引入了 Cookie 技术。Cookie 技术通过在请求和响应报文中写入 Cookie 信息来控制客户端的状态。
Cookie 会根据从服务器端发送的响应报文内的一个叫做 Set-Cookie 的首部字段信息,通知客户端保存 Cookie。当下次客户端再往该服务器发送请求时,客户端会自动在请求报文中加入 Cookie 值后发送出去。
上图展示了发生 Cookie 交互的情景,HTTP 请求报文和响应报文的内容如下。