第一章 Stream流
说到Stream便容易想到I/O Stream,而实际上,谁规定“流”就一定是“IO流”呢?在Java8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。
1.1 引言
传统集合的多步遍历代码
几乎所有的集合(如Collection
接口或Map
接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:
import java.util.ArrayList; import java.util.List;
public class Demo01ForEach {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
for (String name : list) {
System.out.println(name);
}
}
}
这是一段非常简单的集合遍历操作:对集合中的每一个字符串都进行打印输出操作。
循环遍历的弊端
Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,我们仔细体会一下上例代码,可以发现:
- for循环的语法就是“怎么做”
- for循环的循环体才是“做什么”
为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。
试想一下,如果希望对集合中的元素进行筛选过滤:
1. 将集合A根据条件一过滤为子集B;
2. 然后再根据条件二过滤为子集C。
那怎么办?在Java 8之前的做法可能为:
import java.util.ArrayList; import java.util.List;
public class Demo02NormalFilter {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
List<String> zhangList = new ArrayList<>();
for (String name : list) {
if (name.startsWith("张")) {
zhangList.add(name);
}
}
List<String> shortList = new ArrayList<>();
for (String name : zhangList) {
if (name.length() == 3) {
shortList.add(name);
}
}
for (String name : shortList) {
System.out.println(name);
}
}
}
这段代码中含有三个循环,每一个作用不同:
- 首先筛选所有姓张的人;
- 然后筛选名字有三个字的人;
- 最后进行对结果进行打印输出。
每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使 用另一个循环从头开始。那,Lambda的衍生物Stream能给我们带来怎样更加优雅的写法呢?
Stream的更优写法
下面来看一下借助Java8的Stream API,什么才叫优雅:
import java.util.ArrayList; import java.util.List;
public class Demo03StreamFilter {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("张强");
list.add("张三丰");
list.stream()
.filter(s ‐> s.startsWith("张"))
.filter(s ‐> s.length() == 3)
.forEach(System.out::println);
}
}
直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印。代码 中并没有体现使用线性循环或是其他任何算法进行遍历,我们真正要做的事情内容被更好地体现在代码中。
1.2 流式思想概述
注意:请暂时忘记对传统IO流的固有印象!
整体来看,流式思想类似于工厂车间的“生产流水线”。
当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤 方案,然后再按照方案去执行它。
这张图中展示了过滤、映射、跳过、计数等多步操作,这是一种集合元素的处理方案,而方案就是一种“函数模型”。图中的每一个方框都是一个“流”,调用指定的方法,可以从一个流模型转换为另一个流模型。而最右侧的数字3是最终结果。
这里的filter
、map
、skip
都是在对函数模型进行操作,集合元素并没有真正被处理。只有当终结方法count执行的时候,整个模型才会按照指定策略执行操作。而这得益于Lambda的延迟执行特性。
备注:“Stream流”其实是一个集合元素的函数模型,它并不是集合,也不是数据结构,其本身并不存储任何元素(或其地址值)。
Stream(流)是一个来自数据源的元素队列
- 元素是特定类型的对象,形成一个队列。 Java中的Stream并不会存储元素,而是按需计算。
- 数据源流的来源。 可以是集合,数组等。
和以前的Collection操作不同, Stream操作还有两个基础的特征:
- Pipelining: 中间操作都会返回流对象本身。 这样多个操作可以串联成一个管道, 如同流式风格(fluentstyle)。 这样做可以对操作进行优化, 比如延迟执行(laziness)和短路( short-circuiting)。
- 内部迭代: 以前对集合遍历都是通过Iterator或者增强for的方式, 显式的在集合外部进行迭代, 这叫做外部迭代。 Stream提供了内部迭代的方式,流可以直接调用遍历方法。
当使用一个流的时候,通常包括三个基本步骤:获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道。
获取流
java.util.stream.Stream<T>
是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)
获取一个流非常简单,有以下几种常用的方式:
- 所有的
Collection
集合都可以通过stream
默认方法获取流; Stream
接口的静态方法of
可以获取数组对应的流。根据Collection获取流
首先,java.util.Collection
接口中加入了default方法stream 用来获取流,所以其所有实现类均可获取流。 ```java import java.util.*; import java.util.stream.Stream;
public class Demo04GetStream {
public static void main(String[] args) { List
Set<String> set = new HashSet<>();
// ...
Stream<String> stream2 = set.stream();
Vector<String> vector = new Vector<>();
// ...
Stream<String> stream3 = vector.stream();
}
}
<a name="ztJZe"></a>
### 根据Map获取流
`java.util.Map` 接口不是`Collection `的子接口,且其K-V数据结构不符合流元素的单一特征,所以获取对应的流需要分key、value或entry等情况:
```java
import java.util.HashMap; import java.util.Map;
import java.util.stream.Stream;
public class Demo05GetStream {
public static void main(String[] args) {
Map<String, String> map = new HashMap<>();
// ...
Stream<String> keyStream = map.keySet().stream();
Stream<String> valueStream = map.values().stream();
Stream<Map.Entry<String, String>> entryStream = map.entrySet().stream();
}
}
根据数组获取流
如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以Stream
接口中提供了静态方法of
,使用很简单:
import java.util.stream.Stream;
public class Demo06GetStream {
public static void main(String[] args) {
String[] array = { "张无忌", "张翠山", "张三丰", "张一元" };
Stream<String> stream = Stream.of(array);
}
}
备注:
of
方法的参数其实是一个可变参数,所以支持数组。
1.4 常用方法
流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:
- 延迟方法:返回值类型仍然是
Stream
接口自身类型的方法,因此支持链式调用。(除了终结方法外,其余方法均为延迟方法。) - 终结方法:返回值类型不再是
Stream
接口自身类型的方法,因此不再支持类似StringBuilder
那样的链式调用。本小节中,终结方法包括count
和forEach
方法。备注:本小节之外的更多方法,请自行参考API文档。
逐一处理:forEach
虽然方法名字叫forEach
,但是与for循环中的“for-each”昵称不同。
void forEach(Consumer<? super T> action);
该方法接收一个Consumer
接口函数,会将每一个流元素交给该函数进行处理。
复习Consumer接口
java.util.function.Consumer<T>
接口是一个消费型接口。Consumer
接口中包含抽象方法void accept(T t)
,意为消费一个指定泛型的数据。
基本使用:
import java.util.stream.Stream;
/*
Stream流中的常用方法_forEach
void forEach(Consumer<? super T> action);
该方法接收一个Consumer接口函数,会将每一个流元素交给该函数进行处理。
Consumer接口是一个消费型的函数式接口,可以传递Lambda表达式,消费数据
简单记:
forEach方法,用来遍历流中的数据
是一个终结方法,遍历之后就不能继续调用Stream流中的其他方法
*/
public class Demo02Stream_forEach {
public static void main(String[] args) {
//获取一个Stream流
Stream<String> stream = Stream.of("张三", "李四", "王五", "赵六", "田七");
//使用Stream流中的方法forEach对Stream流中的数据进行遍历
/*stream.forEach((String name)->{
System.out.println(name);
});*/
stream.forEach(name->System.out.println(name));
}
}
import java.util.stream.Stream;
public class Demo12StreamForEach {
public static void main(String[] args) {
Stream<String> stream = Stream.of("张无忌", "张三丰", "周芷若");
stream.forEach(name‐> System.out.println(name));
}
}
过滤:filter
可以通过filter 方法将一个流转换成另一个子集流。方法签名:Stream<T> filter(Predicate<? super T> predicate);
该接口接收一个Predicate
函数式接口参数(可以是一个Lambda或方法引用)作为筛选条件。
复习Predicate接口
此前我们已经学习过java.util.stream.Predicate 函数式接口,其中唯一的抽象方法为:boolean test(T t);
该方法将会产生一个boolean值结果,代表指定的条件是否满足。如果结果为true,那么Stream流的filter
方法
将会留用元素;如果结果为false,那么filter
方法将会舍弃元素。
基本使用
Stream流中的filter
方法基本使用的代码如:
import java.util.stream.Stream;
/*
Stream流中的常用方法_filter:用于对Stream流中的数据进行过滤
Stream<T> filter(Predicate<? super T> predicate);
filter方法的参数Predicate是一个函数式接口,所以可以传递Lambda表达式,对数据进行过滤
Predicate中的抽象方法:
boolean test(T t);
*/
public class Demo03Stream_filter {
public static void main(String[] args) {
//创建一个Stream流
Stream<String> stream = Stream.of("张三丰", "张翠山", "赵敏", "周芷若", "张无忌");
//对Stream流中的元素进行过滤,只要姓张的人
Stream<String> stream2 = stream.filter((String name)->{return name.startsWith("张");});
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
/*
Stream流属于管道流,只能被消费(使用)一次
第一个Stream流调用完毕方法,数据就会流转到下一个Stream上
而这时第一个Stream流已经使用完毕,就会关闭了
所以第一个Stream流就不能再调用方法了
IllegalStateException: stream has already been operated upon or closed
*/
//遍历stream流
stream.forEach(name-> System.out.println(name));
}
}
映射:map
如果需要将流中的元素映射到另一个流中,可以使用map 方法。方法签名:<R> Stream<R> map(Function<? super T, ? extends R> mapper);
该接口需要一个Function
函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。
复习Function接口
此前我们已经学习过java.util.stream.Function 函数式接口,其中唯一的抽象方法为:R apply(T t);
这可以将一种T类型转换成为R类型,而这种转换的动作,就称为“映射”。
基本使用
Stream流中的map
方法基本使用的代码如:
import java.util.stream.Stream;
/*
Stream流中的常用方法_map:用于类型转换
如果需要将流中的元素映射到另一个流中,可以使用map方法.
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。
Function中的抽象方法:
R apply(T t);
*/
public class Demo04Stream_map {
public static void main(String[] args) {
//获取一个String类型的Stream流
Stream<String> stream = Stream.of("1", "2", "3", "4");
//使用map方法,把字符串类型的整数,转换(映射)为Integer类型的整数
Stream<Integer> stream2 = stream.map((String s)->{
return Integer.parseInt(s);
});
//遍历Stream2流
stream2.forEach(i-> System.out.println(i));
}
}
这段代码中, map
方法的参数通过方法引用,将字符串类型转换成为了int类型(并自动装箱为Integer
类对象)。
统计个数:count
正如旧集合Collection
当中的size
方法一样,流提供count
方法来数一数其中的元素个数:long count();
该方法返回一个long值代表元素个数(不再像旧集合那样是int值)。基本使用:
import java.util.ArrayList;
import java.util.stream.Stream;
/*
Stream流中的常用方法_count:用于统计Stream流中元素的个数
long count();
count方法是一个终结方法,返回值是一个long类型的整数
所以不能再继续调用Stream流中的其他方法了
*/
public class Demo05Stream_count {
public static void main(String[] args) {
//获取一个Stream流
ArrayList<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.add(4);
list.add(5);
list.add(6);
list.add(7);
Stream<Integer> stream = list.stream();
long count = stream.count();
System.out.println(count);//7
}
}
取用前几个:limit
limit
方法可以对流进行截取,只取用前n个。方法签名:Stream<T> limit(long maxSize);
参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作。基本使用:
import java.util.stream.Stream;
/*
Stream流中的常用方法_limit:用于截取流中的元素
limit方法可以对流进行截取,只取用前n个。方法签名:
Stream<T> limit(long maxSize);
参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作
limit方法是一个延迟方法,只是对流中的元素进行截取,返回的是一个新的流,所以可以继续调用Stream流中的其他方法
*/
public class Demo06Stream_limit {
public static void main(String[] args) {
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream = Stream.of(arr);
//使用limit对Stream流中的元素进行截取,只要前3个元素
Stream<String> stream2 = stream.limit(3);
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
}
}
跳过前几个:skip
如果希望跳过前几个元素,可以使用skip
方法获取一个截取之后的新流:Stream<T> skip(long n);
如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。基本使用:
import java.util.stream.Stream;
/*
Stream流中的常用方法_skip:用于跳过元素
如果希望跳过前几个元素,可以使用skip方法获取一个截取之后的新流:
Stream<T> skip(long n);
如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。
*/
public class Demo07Stream_skip {
public static void main(String[] args) {
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream = Stream.of(arr);
//使用skip方法跳过前3个元素
Stream<String> stream2 = stream.skip(3);
//遍历stream2流
stream2.forEach(name-> System.out.println(name));
}
}
组合:concat
如果有两个流,希望合并成为一个流,那么可以使用Stream 接口的静态方法concat :static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)
备注:这是一个静态方法,与java.lang.String 当中的concat 方法是不同的。
该方法的基本使用代码如:
import java.util.stream.Stream;
/*
Stream流中的常用方法_concat:用于把流组合到一起
如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat
static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)
*/
public class Demo08Stream_concat {
public static void main(String[] args) {
//创建一个Stream流
Stream<String> stream1 = Stream.of("张三丰", "张翠山", "赵敏", "周芷若", "张无忌");
//获取一个Stream流
String[] arr = {"美羊羊","喜洋洋","懒洋洋","灰太狼","红太狼"};
Stream<String> stream2 = Stream.of(arr);
//把以上两个流组合为一个流
Stream<String> concat = Stream.concat(stream1, stream2);
//遍历concat流
concat.forEach(name-> System.out.println(name));
}
}
1.5 练习:集合元素处理(传统方式)
题目
现在有两个ArrayList
集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以
下若干操作步骤:
- 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
- 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
- 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
- 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
- 将两个队伍合并为一个队伍;存储到一个新集合中。
- 根据姓名创建
Person
对象;存储到一个新集合中。 - 打印整个队伍的
Person
对象信息。
两个队伍(集合)的代码如下:
import java.util.ArrayList;
import java.util.List;
public class DemoArrayListNames {
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//第二支队伍
ArrayList<String> two = new ArrayList<>(); two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
// ....
}
}
而Person
类的代码为:
public class Person {
private String name;
public Person() {
}
public Person(String name) {
this.name = name;
}
@Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
'}';
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
解答
既然使用传统的for循环写法,那么:
import java.util.ArrayList;
/*
练习:集合元素处理(传统方式)
现在有两个ArrayList集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以下若干操作步骤:
1. 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
2. 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
3. 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
4. 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
5. 将两个队伍合并为一个队伍;存储到一个新集合中。
6. 根据姓名创建Person对象;存储到一个新集合中。
7. 打印整个队伍的Person对象信息。
*/
public class Demo01StreamTest {
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//1. 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
ArrayList<String> one1 = new ArrayList<>();
for (String name : one) {
if(name.length()==3){
one1.add(name);
}
}
//2. 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
ArrayList<String> one2 = new ArrayList<>();
for (int i = 0; i <3 ; i++) {
one2.add(one1.get(i));//i = 0,1,2
}
//第二支队伍
ArrayList<String> two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
//3. 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
ArrayList<String> two1 = new ArrayList<>();
for (String name : two) {
if(name.startsWith("张")){
two1.add(name);
}
}
//4. 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
ArrayList<String> two2 = new ArrayList<>();
for (int i = 2; i <two1.size() ; i++) {
two2.add(two1.get(i)); //i 不包含0 1
}
//5. 将两个队伍合并为一个队伍;存储到一个新集合中。
ArrayList<String> all = new ArrayList<>();
all.addAll(one2);
all.addAll(two2);
//6. 根据姓名创建Person对象;存储到一个新集合中。
ArrayList<Person> list = new ArrayList<>();
for (String name : all) {
list.add(new Person(name));
}
//7. 打印整个队伍的Person对象信息。
for (Person person : list) {
System.out.println(person);
}
}
}
运行结果为:
Person{name='宋远桥'}
Person{name='苏星河'}
Person{name='石破天'}
Person{name='张天爱'}
Person{name='张二狗'}
1.6 练习:集合元素处理(Stream方式)
题目
将上一题当中的传统for循环写法更换为Stream流式处理方式。两个集合的初始内容不变, Person
类的定义也不变。
解答
等效的Stream
流式处理代码为:
import java.util.ArrayList;
import java.util.stream.Stream;
/*
练习:集合元素处理(Stream方式)
将上一题当中的传统for循环写法更换为Stream流式处理方式。
两个集合的初始内容不变,Person类的定义也不变。
*/
public class Demo02StreamTest {
public static void main(String[] args) {
//第一支队伍
ArrayList<String> one = new ArrayList<>();
one.add("迪丽热巴");
one.add("宋远桥");
one.add("苏星河");
one.add("石破天");
one.add("石中玉");
one.add("老子");
one.add("庄子");
one.add("洪七公");
//1. 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
//2. 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
Stream<String> oneStream = one.stream().filter(name -> name.length() == 3).limit(3);
//第二支队伍
ArrayList<String> two = new ArrayList<>();
two.add("古力娜扎");
two.add("张无忌");
two.add("赵丽颖");
two.add("张三丰");
two.add("尼古拉斯赵四");
two.add("张天爱");
two.add("张二狗");
//3. 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
//4. 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
Stream<String> twoStream = two.stream().filter(name -> name.startsWith("张")).skip(2);
//5. 将两个队伍合并为一个队伍;存储到一个新集合中。
//6. 根据姓名创建Person对象;存储到一个新集合中。
//7. 打印整个队伍的Person对象信息。
Stream.concat(oneStream,twoStream).map(name->new Person(name)).forEach(p-> System.out.println(p));
}
}
运行效果完全一样:
Person{name='宋远桥'}
Person{name='苏星河'}
Person{name='石破天'}
Person{name='张天爱'}
Person{name='张二狗'}
第二章 方法引用
在使用Lambda表达式的时候,我们实际上传递进去的代码就是一种解决方案:拿什么参数做什么操作。那么考虑 一种情况:如果我们在Lambda中所指定的操作方案,已经有地方存在相同方案,那是否还有必要再写重复逻辑?
2.1 冗余的Lambda场景
来看一个简单的函数式接口以应用Lambda表达式:
/*
定义一个打印的函数式接口
*/
@FunctionalInterface
public interface Printable {
//定义字符串的抽象方法
void print(String s);
}
在Printable
接口当中唯一的抽象方法print 接收一个字符串参数,目的就是为了打印显示它。那么通过Lambda来使用它的代码很简单:
public class Demo01Printable {
//定义一个方法,参数传递Printable接口,对字符串进行打印
public static void printString(Printable p) {
p.print("HelloWorld");
}
public static void main(String[] args) {
//调用printString方法,方法的参数Printable是一个函数式接口,所以可以传递Lambda
printString((s) -> {
System.out.println(s);
});
/*
分析:
Lambda表达式的目的,打印参数传递的字符串
把参数s,传递给了System.out对象,调用out对象中的方法println对字符串进行了输出
注意:
1.System.out对象是已经存在的
2.println方法也是已经存在的
所以我们可以使用方法引用来优化Lambda表达式
可以使用System.out方法直接引用(调用)println方法
*/
printString(System.out::println);
}
}
其中printString
方法只管调用Printable
接口的print
方法,而并不管print
方法的具体实现逻辑会将字符串打印到什么地方去。而main
方法通过Lambda表达式指定了函数式接口Printable
的具体操作方案为:拿到String(类型可推导,所以可省略)数据后,在控制台中输出它。
2.2 问题分析
这段代码的问题在于,对字符串进行控制台打印输出的操作方案,明明已经有了现成的实现,那就是System.out
对象中的println(String)
方法。既然Lambda希望做的事情就是调用println(String)
方法,那何必自己手动调用呢?
2.3 用方法引用改进代码
能否省去Lambda的语法格式(尽管它已经相当简洁)呢?只要“引用”过去就好了:
public class Demo02PrintRef {
private static void printString(Printable data) {
data.print("Hello, World!");
}
public static void main(String[] args) {
printString(System.out::println);
}
}
请注意其中的双冒号::
写法,这被称为“方法引用”,而双冒号是一种新的语法。
2.4 方法引用符
双冒号::
为引用运算符,而它所在的表达式被称为方法引用。如果Lambda要表达的函数方案已经存在于某个方法的实现中,那么则可以通过双冒号来引用该方法作为Lambda的替代者。
语义分析
例如上例中,System.out
对象中有一个重载的println(String)
方法恰好就是我们所需要的。那么对于printString
方法的函数式接口参数,对比下面两种写法,完全等效
- Lambda表达式写法:
s -> System.out.println(s);
- 方法引用写法:
System.out::println
第一种语义是指:拿到参数之后经Lambda之手,继而传递给System.out.println
方法去处理。
第二种等效写法的语义是指:直接让System.out
中的println
方法来取代Lambda。两种写法的执行效果完全一
样,而第二种方法引用的写法复用了已有方案,更加简洁。
注:Lambda 中 传递的参数 一定是方法引用中 的那个方法可以接收的类型,否则会抛出异常
推导与省略
如果使用Lambda,那么根据“可推导就是可省略”的原则,无需指定参数类型,也无需指定的重载形式——它们都将被自动推导。而如果使用方法引用,也是同样可以根据上下文进行推导。
函数式接口是Lambda的基础,而方法引用是Lambda的孪生兄弟。
下面这段代码将会调用println 方法的不同重载形式,将函数式接口改为int类型的参数:
@FunctionalInterface
public interface PrintableInteger {
void print(int str);
}
由于上下文变了之后可以自动推导出唯一对应的匹配重载,所以方法引用没有任何变化:
public class Demo03PrintOverload {
private static void printInteger(PrintableInteger data) {
data.print(1024);
}
public static void main(String[] args) {
printInteger(System.out::println);
}
}
这次方法引用将会自动匹配到println(int)
的重载形式。
2.5 通过对象名引用成员方法
这是最常见的一种用法,与上例相同。如果一个类中已经存在了一个成员方法:
public class MethodRerObject {
//定义一个成员方法,传递字符串,把字符串按照大写输出
public void printUpperCaseString(String str){
System.out.println(str.toUpperCase());
}
}
函数式接口仍然定义为:
/*
定义一个打印的函数式接口
*/
@FunctionalInterface
public interface Printable {
//定义字符串的抽象方法
void print(String s);
}
那么当需要使用这个printUpperCase
成员方法来替代Printable
接口的Lambda的时候,已经具有了MethodRefObject
类的对象实例,则可以通过对象名引用成员方法,代码为:
/*
通过对象名引用成员方法
使用前提是对象名是已经存在的,成员方法也是已经存在
就可以使用对象名来引用成员方法
*/
public class Demo01ObjectMethodReference {
//定义一个方法,方法的参数传递Printable接口
public static void printString(Printable p){
p.print("Hello");
}
public static void main(String[] args) {
//调用printString方法,方法的参数Printable是一个函数式接口,所以可以传递Lambda表达式
printString((s)->{
//创建MethodRerObject对象
MethodRerObject obj = new MethodRerObject();
//调用MethodRerObject对象中的成员方法printUpperCaseString,把字符串按照大写输出
obj.printUpperCaseString(s);
});
/*
使用方法引用优化Lambda
对象是已经存在的MethodRerObject
成员方法也是已经存在的printUpperCaseString
所以我们可以使用对象名引用成员方法
*/
//创建MethodRerObject对象
MethodRerObject obj = new MethodRerObject();
printString(obj::printUpperCaseString);
}
}
2.6 通过类名称引用静态方法
由于在java.lang.Math
类中已经存在了静态方法abs
,所以当我们需要通过Lambda来调用该方法时,有两种写法。首先是函数式接口:
@FunctionalInterface
public interface Calcable {
//定义一个抽象方法,传递一个整数,对整数进行绝对值计算并返回
int calsAbs(int number);
}
第一种写法是使用Lambda表达式:
/*
通过类名引用静态成员方法
类已经存在,静态成员方法也已经存在
就可以通过类名直接引用静态成员方法
*/
public class Demo01StaticMethodReference {
//定义一个方法,方法的参数传递要计算绝对值的整数,和函数式接口Calcable
public static int method(int number,Calcable c){
return c.calsAbs(number);
}
public static void main(String[] args) {
//调用method方法,传递计算绝对值得整数,和Lambda表达式
int number = method(-10,(n)->{
//对参数进行绝对值得计算并返回结果
return Math.abs(n);
});
System.out.println(number);
/*
使用方法引用优化Lambda表达式
Math类是存在的
abs计算绝对值的静态方法也是已经存在的
所以我们可以直接通过类名引用静态方法
*/
int number2 = method(-10,Math::abs);
System.out.println(number2);
}
}
在这个例子中,下面两种写法是等效的:
- Lambda表达式:
n -> Math.abs(n)
-
2.7 通过super引用成员方法
如果存在继承关系,当Lambda中需要出现super调用时,也可以使用方法引用进行替代。首先是函数式接口:
/*
定义见面的函数式接口
*/
@FunctionalInterface
public interface Greetable {
//定义一个见面的方法
void greet();
}
然后是父类
Human
的内容:/*
定义父类
*/
public class Human {
//定义一个sayHello的方法
public void sayHello(){
System.out.println("Hello 我是Human!");
}
}
最后是子类
Man
的内容,其中使用了Lambda的写法:/*
定义子类
*/
public class Man extends Human{
//子类重写父类sayHello的方法
@Override
public void sayHello() {
System.out.println("Hello 我是Man!");
}
//定义一个方法参数传递Greetable接口
public void method(Greetable g){
g.greet();
}
public void show(){
//调用method方法,方法的参数Greetable是一个函数式接口,所以可以传递Lambda
/*method(()->{
//创建父类Human对象
Human h = new Human();
//调用父类的sayHello方法
h.sayHello();
});*/
//因为有子父类关系,所以存在的一个关键字super,代表父类,所以我们可以直接使用super调用父类的成员方法
/* method(()->{
super.sayHello();
});*/
/*
使用super引用类的成员方法
super是已经存在的
父类的成员方法sayHello也是已经存在的
所以我们可以直接使用super引用父类的成员方法
*/
method(super::sayHello);
}
public static void main(String[] args) {
new Man().show();
}
}
在这个例子中,下面两种写法是等效的:
Lambda表达式:
() -> super.sayHello()
-
2.8 通过this引用成员方法
this代表当前对象,如果需要引用的方法就是当前类中的成员方法,那么可以使用“this::成员方法”的格式来使用方 法引用。首先是简单的函数式接口:
/*
定义一个富有的函数式接口
*/
@FunctionalInterface
public interface Richable {
//定义一个想买什么就买什么的方法
void buy();
}
下面是一个丈夫
Husband
类:/*
使用this引用本类的成员方法
*/
public class Husband {
//定义一个买房子的方法
public void buyHouse(){
System.out.println("北京二环内买一套四合院!");
}
//定义一个结婚的方法,参数传递Richable接口
public void marry(Richable r){
r.buy();
}
//定义一个非常高兴的方法
public void soHappy(){
//调用结婚的方法,方法的参数Richable是一个函数式接口,传递Lambda表达式
/* marry(()->{
//使用this.成员方法,调用本类买房子的方法
this.buyHouse();
});*/
/*
使用方法引用优化Lambda表达式
this是已经存在的
本类的成员方法buyHouse也是已经存在的
所以我们可以直接使用this引用本类的成员方法buyHouse
*/
marry(this::buyHouse);
}
public static void main(String[] args) {
new Husband().soHappy();
}
}
在这个例子中,下面两种写法是等效的:
Lambda表达式:
() -> this.buyHouse()
-
2.9 类的构造器引用
由于构造器的名称与类名完全一样,并不固定。所以构造器引用使用
类名称::new
的格式表示。首先是一个简单的Person
类:public class Person {
private String name;
public Person() {
}
public Person(String name) {
this.name = name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
然后是用来创建
Person
对象的函数式接口:/*
定义一个创建Person对象的函数式接口
*/
@FunctionalInterface
public interface PersonBuilder {
//定义一个方法,根据传递的姓名,创建Person对象返回
Person builderPerson(String name);
}
要使用这个函数式接口,可以通过Lambda表达式,构造器引用:
/*
类的构造器(构造方法)引用
*/
public class Demo {
//定义一个方法,参数传递姓名和PersonBuilder接口,方法中通过姓名创建Person对象
public static void printName(String name,PersonBuilder pb){
Person person = pb.builderPerson(name);
System.out.println(person.getName());
}
public static void main(String[] args) {
//调用printName方法,方法的参数PersonBuilder接口是一个函数式接口,可以传递Lambda
printName("迪丽热巴",(String name)->{
return new Person(name);
});
/*
使用方法引用优化Lambda表达式
构造方法new Person(String name) 已知
创建对象已知 new
就可以使用Person引用new创建对象
*/
printName("古力娜扎",Person::new);//使用Person类的带参构造方法,通过传递的姓名创建对象
}
}
在这个例子中,下面两种写法是等效的:
Lambda表达式:
name -> new Person(name)
- 方法引用:
Person::new
2.10 数组的构造器引用
数组也是Object
的子类对象,所以同样具有构造器,只是语法稍有不同。如果对应到Lambda的使用场景中时,
需要一个函数式接口:
在应用该接口的时候,可以通过Lambda表达式 , 数组的构造器引用: ```java import java.util.Arrays;/*
定义一个创建数组的函数式接口
*/
@FunctionalInterface
public interface ArrayBuilder {
//定义一个创建int类型数组的方法,参数传递数组的长度,返回创建好的int类型数组
int[] builderArray(int length);
}
/ 数组的构造器引用 / public class Demo { / 定义一个方法 方法的参数传递创建数组的长度和ArrayBuilder接口 方法内部根据传递的长度使用ArrayBuilder中的方法创建数组并返回 / public static int[] createArray(int length, ArrayBuilder ab){ return ab.builderArray(length); }
public static void main(String[] args) {
//调用createArray方法,传递数组的长度和Lambda表达式
int[] arr1 = createArray(10,(len)->{
//根据数组的长度,创建数组并返回
return new int[len];
});
System.out.println(arr1.length);//10
/*
使用方法引用优化Lambda表达式
已知创建的就是int[]数组
数组的长度也是已知的
就可以使用方法引用
int[]引用new,根据参数传递的长度来创建数组
*/
int[] arr2 =createArray(10,int[]::new);
System.out.println(Arrays.toString(arr2));
System.out.println(arr2.length);//10
}
} ``` 在这个例子中,下面两种写法是等效的:
- Lambda表达式:
length -> new int[length]
- 方法引用:
int[]::new